• Title/Summary/Keyword: 리그닌

Search Result 339, Processing Time 0.028 seconds

Use and Evaluation of Lignin as Ion Exchangers (이온교환체로서 리그닌의 이용과 평가)

  • Ads, Essam.N.;Nada, A.M.A.;El-Masry, A.M.
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.86-91
    • /
    • 2011
  • Modified lignins were prepared. Soda and peroxy lignins were precipitated from black liquor produced from bagasse pulping with soda and peroxyacid pulping process. The precipitated lignins were hydrolyzed using 10% HCl. Different functional groups were also incorporated into lignin by carboxylation and phosphorylation reactions. Moreover crosslinking of these lignins were carried out using epichlorohydrin. Characterization of the modified lignins and lignins derivative were carried out using Infrared spectroscopy. Thermal analysis of these compounds were also carried out using TGA and DTA techniques. Efficiency of sorption of metal ions by the modified lignin was also investigated. It was found that, the peroxylignin and its derivatives show higher efficiency toward metal ions uptake than the soda lignin.

Anaerobic Biodegradation of Lignin by BMP Test and Measurement of Lignin-derived Compound Using GC & GC/MS (BMP법에 의한 리그닌의 혐기성 분해 및 GC와 GC/MS을 이용한 리그닌 분해산물 측정)

  • Kim, Seog-Ku
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.16 no.3
    • /
    • pp.46-51
    • /
    • 2008
  • The traditional view of the fate of lignin under anaerobic conditions is that it is recalcitrant because molecular oxygen is required for depolymerization. The presence of lignin is apparently the most important factor affecting the biodegradability of ligneous materials. The initial step in the degradation of ligneous material to smaller intermediates is catalyzed by enzymes secreted by microorganisms and is generally regarded as the rate limiting step in the microbial mineralization of organic matter. Biochemical methane potential (BMP) test, typically used to assess anaerobic biodegradability of liquid wastes with added nutrients and bacteria, have been adapted to assess initial biodegradation of ligneous material under anaerobic conditions. A method based on selective inhibition of microorganism activity, by 3% toluene, has been used to measure using the initial degradation rate of ligneous material and the accumulation of lignin-derived compounds.

  • PDF

Screening and Evaluating of Wood-Rotting Fungi for Lignin Degradation and Ligninolytic Enzyme Production(I) - Screening of High Active Lignin-Degrading Fungi - (리그닌분해(分解)와 리그닌분해효소(分解酵素) 생산(生産)을 위한 목재부후균(木材腐朽菌)의 선발(選拔)과 평가(評價)(I) - 고활성(高活性) 리그닌분해균(分解菌)의 선발(選拔) -)

  • Jung, Hyun-Chae;Park, Seur-Kee;Kim, Byeong-Soo;Park, Chong-Yawl
    • Journal of the Korean Wood Science and Technology
    • /
    • v.23 no.4
    • /
    • pp.108-116
    • /
    • 1995
  • This experiment was conducted to screen a superior wood-rotting fungi for lignin degradation and ligninolytic enzyme production by evaluation of red colored zone width on potato-dextrose agar medium and oak woodmeal medium complimented guaiacol. Relationship between the red colored zone width on GU-WA medium and klason lignin loss on woodmeal medium showed the positive correlation. Thus, the potential ligninolytic activity of wood rotting fungi which are not elucidated yet may be estimated to some extent by the evaluation of the red colored zone width on GU-WA medium. Of the isolates screened from fruit bodies and decayed woods. LKY-12, LKY-7 and C. versicolor-13 isolates having preferential lignin degradation and laccase activity were selected. These isolates exhibited characteristics of superior wood-rotting fungi as Klason lignin loss ranged from 30% to 35% and ligninolytic enzyme activity of these isolates on glucose-peptone broth was higher than that of other isolates. And then, these isolates were considered to be able to use in biological pulping and bleaching and ligninolytic enzyme production.

  • PDF

Seasonal Expression of OMT Gene in Relation to Lignin biosynthesis in two Poplar Species (종의 포플라수종에서 리그닌생합성에 관계된 OMT유전자의 발현)

  • Park, Young-Goo;Park, Hee Sung;Choi, Jang Won;Sul, Ill Whan;Chung, Il Kyung;Shin, Dong Ill
    • Journal of Life Science
    • /
    • v.8 no.4
    • /
    • pp.443-448
    • /
    • 1998
  • We analyzed lignin content and wxpression of OMT gene during growth season in two hybrid poplar species. OMT gene expression was observed mainy in the developing secondary xylem where major quantity of lignin occurs. Lignin content in the xylem tissue increased as plant resumed growth in the spring and reached the highest in the late August. Change in lignin content was concurrent with that of OMT gene expression, indicating OMT is a key enzyme in lignin biosynthesis.

  • PDF

Lignocellulose Biodegradation and Interaction between Cellulose and Lignin under Sulfate Reducing Conditions (황산염 환원 조건에서 리그노셀룰로오스의 분해 및 리그닌과 셀룰로오스의 상호작용)

  • Ko, Jae-Jung;Kim, Seog-Ku;Shimizu, Yoshihisa
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.15 no.4
    • /
    • pp.131-137
    • /
    • 2007
  • In this study, the biodegradation test on lignocellulose under sulfate reducing conditions was carried out. In particular, the interaction between cellulose and lignin was investigated with various g-cellulose/g-lignin (C/L) ratios: 42.15, 4.59, 2.51, 1.14 and 0.7. It was shown that the rate of cellulose degradation decreased in proportion to the lignin content. Assuming first order degradation kinetics, the consequences of competitive inhibition were graphically shown for different C/L ratios. The relation between cellulose reduction rate and C/L ratio was expressed by logarithm function with a determination coefficient of 0.97. Lignocellulose reduction rate was also described as a logarithm function of C/L ratio showing a inhibition effect by lignin. In the mean time, the rate of lignin decomposition was higher at C/L ratio of 2.51 and 1.14 compared with C/L ratios of 4.59 and 0.7, indicating that excessive extra carbon source is not appropriate for lignin biodegradation.

  • PDF

Screening of Outstanding White Rot Fungi for Biodegradation of Organosolv Lignin by Decolorization of Remazol Brilliant Blue R and Ligninolytic Enzymes Systems (Remazol Brilliant Blue R 탈색능과 리그닌 분해 효소시스템을 이용한 유기용매 리그닌 생분해 우수 균주 선별)

  • Hong, Chang-Young;Kim, Ho-Yong;Jang, Soo-Kyeong;Choi, In-Gyu
    • Journal of the Korean Wood Science and Technology
    • /
    • v.41 no.1
    • /
    • pp.19-32
    • /
    • 2013
  • In this study, outstanding white rot fungi for biodegradation of organosolv lignin were selected on the basis of their ligninolytic enzyme system. Fifteen white rot fungi were evaluated for their ability to decolorize Remazol Brilliant Blue R (RBBR) in SSC and MEB medium, respectively. Six white rot fungi (Ceriporiopsis subvermispora, Ceriporia lacerate, Fomitopsis insularis, Phanerochaete chrysosporium, Polyporus brumalis, and Stereum hirsutum) decolorized RBBR rapidly in SSC medium within 3 days. The protein contents as well as the activities of manganese peroxidase (MnP) and laccase for 6 selected fungi were determined on the SSC medium with and without organosolv lignin. Interestingly, extracellular protein concentrations were determined to relative higher for S. hirsutum and P. chrysosporium in the presence of organosolv lignin than others. On the other hands, each fungus showed a different ligninolytic enzyme pattern. Among them, F. insularis resulted the highest ligninolytic enzyme activities on incubation day 6, indicating of 1,545 U/mg of MnP activity and 1,259 U/mg of laccase activity. In conclusion, $STH^*$ and FOI were considered as outstanding fungi for biodegradation of organosolv lignin, because $STH^*$ showed high extracellular protein contents and ligninolytic enzyme activities over all, and ligninolytic enzyme activities of FOI were the highest among white rot fungi used in this study.

Structural Analysis of Milled Wood Lignins Isolated From Aspen Wood (Populus tremuloides L.) Biotreated by Ceriporiopsis subvermispora (Ceriporiopsis subvermispora 처리에 의한 아스펜 목재 리그닌의 구조 변화)

  • Choi, Joon-Weon;Moon, Sung-Hee;Ahn, Sye-Hee;Choi, Don-Ha;Paik, Ki-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.79-86
    • /
    • 2005
  • Aspen wood (Populus tremuloides, L.) was biotreated with Ceriporiopsis subvermispora for 1, 2, 4, and 6 weeks to observe the physical/chemical modification of wood components. Milled wood lignins (MWLs) isolated from each decayed wood were analyzed by gel permeation chromatography (GPC) and nitrobenzene oxidation (NBO). As fungal treatment was progressed, lignin contents continuously decreased up to 20% after 6-week treatment. The lignin polymer could be fragmented to low-molecular phenolics, which make an enhancement of alkali solubility. Holocellulose contents were not affected severely during the period of fungal treatment, only reduction of 5~6% compared to the control. Xylose contents were decreased gradually from 23.4% to 18% after 6 weeks, whereas alpha-cellulose remained almost unchanged. Gel permeation chromatography (GPC) indicates that molecular weight of lignin undergoes a slight decrement for 4 weeks of fungal treatment. Nitrobenzene oxidation revealed that total yield of NBO products of lignins were lowered ca 20% after fungal treatment. Sum of syringaldehyde and syringic acid are remarkably decreased. However, increment of sum of vanillin and vanillic acid was surprisingly observed. These results work as indirect evidence that a specific lignolytic reaction, maybe selective demethoxylaytion of S-lignin, can occur during fungal treatment of aspen wood by C. subvermispora.

Characterization of Pyrolytic Lignin in Biooil Produced with Yellow Poplar (Liriodendron tulipifera) (백합나무 바이오오일에서 회수한 열분해리그닌(Pyrolytic Lignin)의 화학적 특성)

  • Kim, Kwang-Ho;Moon, Sun-Joo;Kim, Tai-Seung;Lee, Soo-Min;Yeo, Hwan-Myeong;Choi, In-Gyu;Choi, Joon-Weon
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.1
    • /
    • pp.86-94
    • /
    • 2011
  • Pyrolytic lignin was obtained from biooil produced with yellow poplar wood. Fast pyrolysis was performed under various temperature ranges and residence times using fluidized bed type reactor. Several analytical methods were adopted to characterize the structure of pyrolytic lignin as well as the effect of pyrolysis temperature and residence time on the modification of the lignin. The yield of pyrolytic lignin increased as increasing pyrolysis temperature and decreasing residence time of pyrolysis products. The molecular weight of pyrolytic lignin determined by gel permeation chromatography (GPC) was approximately 1,200 mol/g, which was approximately a tenth of milled wood lignin (MWL) purified from the same woody biomass. Based on analytical data, demethoxylation and side chain cleavage reaction were dominantly occurred during fast pyrolysis.

Component Analysis of Liguefied Lignins (액화리그닌의 성분분석)

  • 황병호;조국란;공영토;도금현
    • Journal of Korea Foresty Energy
    • /
    • v.18 no.1
    • /
    • pp.17-24
    • /
    • 1999
  • This study was conducted to examine the change in the structure of the lignin during liquefaction of kraft pulp lignin in Pinus korainsis and lignin sulfonic acid. The lignin liquefied compounds were extracted with chloroform from aqueous, liquefied lignins. Through the examination by IR, H($^{13}$C) - NMR and GC-MS spectrometers, phenolic compounds such as diguaiacol, acetic acid phenyl ester, phenol, 1-phenyl ethanone were identified with many of unknown phenolic compounds.

  • PDF

Polymerization and Depolymerization of Lignins by White-Rot Fungi(I)-Degradation of Lignosulfonate by Lignin-degrading Fungi- (백색부후균에 의한 리그닌의 중합화와 탈중합화 (제1보)-리그닌분해균에 의한 Lignosulfonate의 분해-)

  • 정현채;김병수;박종열
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.29 no.4
    • /
    • pp.64-72
    • /
    • 1997
  • 백색부후균에 의한 리그닌의 분해양상을 검토하기 위해 리그닌 분해능이 우수하고 laccase활성이 높은 LKY-7 및 C. versicolor-13 균주와 manganese peroxidase 활성은 비교적 높으나 laccase활성이 전혀 나타나지 않는 LSK-27 균주로 lignosulfonate를 처리하였다. LKY-7 과 C. versicolor-13 균주에서는 lignosulfonate의 중합화 현상이 관찰되었으며 중합화는 laccase 활성 과 비례하는 것으로 나타났다. LSK-27 균주에서는 lignosulfonate의 고분자 영역이 분해되면서 탈중합화가 일어났으며 리그닌 분해 효소로는 manganese peroxidase만 검출되었다. 보조기질로 glucose를 첨가한 결과, LKY-7 균주에서는 laccase 활정이 각소하면서 중합화 현상이 어느 정도 감소하였으나 C. versicolor-13 균주는 laccase 활성의 증가와 함께 중합화도 촉진되는 것으로 나타났다. 또한 LSK-27 균주에서도 glucose 첨가에 의해 manganese peroxidase 활성이 증가되면서 lignosulfonate의 중합화가 관찰되었다. lignosulfonate 중합화에는 laccase 뿐만 아니라 manganese peroxidase도 관여하며 보조기질로서 탄소원의 종류도 영향을 미칠것으로 검토되었다.

  • PDF