2차원 포텐셜 문제를 해석하기 위해 고차의 르장드르 형상함수에 기초를 둔 p-수렴 경계요소법이 제안되었다. p-수렴 경계요소법은 종래의 경계요소법에서 사용되는 형상함수와 성질이 다른 르장드르 다항식을 형상함수로 사용한다. p-수렴 유한요소법과 마찬가지로 고차의 형상함수에 따른 절점의 위치가 경계상에서 정해지지 않는다. 따라서 형상함수가 증가함에 따라 선형방정식을 구성하기 위한 수단으로 선점법을 이용하였다. p-수렴 경계요소법에서 선점법은 비대칭 계층적 선점법과 대칭 비계층적 선점법을 선택하여 수치해석을 수행하였다. 선택점들은 형상함수가 증가함에 따라 증가하는 성질을 나타내며 계층적 또는 대칭적으로 선택될 수 있다. p-수렴 경계요소법에서 나타나는 특이 적분항을 계산하기 위해 special numeric quadrature technique와 semi-analytical integration technique를 사용하였다. 사각모서리부에서 특이성을 가지는 L-형 영역문제를 해석한 결과 적은 수의 자유도에서 기존문헌의 결과와 차이가 거의 없는 정도인 $10^{-2}%$단위 이하의 정확도를 보여주었다. 또한 같은 조건에서는 대칭형 선점의 위치를 이용해 계산한 값이 가장 높은 정확도를 보여주었다.
적응적 hp-세분화 기법과 그 기법의 효과적인 구성방법을 포함한 새로운 적응적 유한요소 알고리즘의 기초이론 및 적용이 이 연구를 통해 제시되었다. 적응적 hp-세분화 기초의 유한요소기법은 적분형 르장드르 형상함수와 요소별로 불균등한차수의 분배 및 비정형적인 절점연결과 관련된 연속조건을 만족시킬 수 있는 제약조건을 필요로 한다. 따라서 요소간의 접합부분에서 적응적 hp-유한요소망의 연속성이 중요한 문제로 대두된다. 이러한 문제를 요소경계에 연속성 제약조건을 절점연결 사상행렬을 적용하여 해결하였다. 또한, 적분형 르장드르 형상함수의 계층성질을 이용하여 제시된 알고리즘의 효율적 정식화 방안을 제시하였다. 간단한 캔틸레버문제가 h-세분화, p-세분화 그리고 hp-세분화 방법에 의해 계산되었다. hp-세분화의 결과는 다른 방식의 세분화에 비해 보다 빠른 수렴성을 보여 주는 것이 확인되었다. 그러므로 제시된 hp-세분화 알고리즘은 실제문제에 효율적으로 적용될 수 있을 것으로 생각된다.
본(本) 연구의 목적(目的)은 평면응력/변형과 축대칭 및 쉘문제를 포함하는 다양한 응용문제에서 계층적(階層的) 성질을 갖는 적분형 르장드르 형상함수에 의한 P-version 모델의 통용성(通用性)을 확인하는 것이다. 현대 유한요소 해석에서 정확도를 확보하지 못하는 가장 큰 이유는 비(非)압축성 재료와 망목(網目)설계시 요소의 형상비(形狀比), 사다리꼴 요소에서 변(邊)의 감소비(減少比)와 평행사변형 요소의 왜곡도(歪曲度) 등을 갖는 불규칙 형상에서 나타나는 가상메카니즘과 Locking 현상이다. 조건수(條件數)와 에너지 노름이 계산오차, 수렴성 및 알고리즘의 효율성을 검증하는데 사용되었으며 해석결과는 NASTRAN과 SAP90 및 Cheung이 제안한 Hybrid 요소와 비교되었다. NASTRAN을 제외한 SAP90 및 P-version 프로그램은 16 Bit 소형컴퓨터에 의해 실행되었다.
본 논문에서는 Reissner-Mindlin 평판이론에 근거한 계층적 $C^{\circ}$-평판요소가 제안되었다. 적분형 르장드르 형상함수에 근거한 계층요소를 제안하는 이유는 종래의 h-version 유한요소법의 개념 을 사용하여 전단구속 효과등에 대한 해의 정확도 및 수치안정성을 확보할 수 있는 요소를 만드는데 여전히 어려움이 수반되기 때문이다. 적응적 체눈 p-세분화와 선택적 형상함수 차수 p의 분포를 사용하는 hp-version 유한요소법을 사용하여 내부주변은 자유단의 개구부를 갖고, 외부주변이 단순지지된 L-형 평판해석을 수행하였는데 종래의 h-version 유한요소법에 비해 우월한 수렴성과 전단구속을 피할 수 있는 등의 알고리즘 효율성을 보여 주고 있다.
축대칭(軸對稱) 선형강성(線形彈性) 응력해석을 위해 p-version 유한요소법에 기초한 계층적(階層的) 정식화 과정이 제안되었다. 이 방식은 적분형 르장드르 다항식을 사용하여 절점좌표값을 갖지 않는 절점을 추가하여 형상함수의 조합형태로 변위함수(變位)를 근사시키는 방법이다. 형상함수(形狀函數)가 계층적 성질을 갖기 때문에 강성도(剛性度)행렬과 하중벡터도 계층적이 된다. 본 연구에서 제안된 요소(要所)의 장점(長點)은 다음과 같다. 첫째, 개선된 수치연산의 효율성이며 둘째, 요소간에 서로 다른 차수(次數)의 형상함수를 사용할 수 있고 셋째, p-세분화를 할 때 저차(低次)일 때 계산된 값을 그대로 사용할 수 있다. 수치예제를 통해 제안된 요소의 정확도(正確度), 효율성(效率性), 모델링의 간편성(簡便性), 적용성(適用性) 및 변위와 응력 그리고 에너지 Norm등을 사용하여 그 우월성을 입증하고 있다. 몇 가지 예제의 해석결과는 이미 발표된 논문과 아울러 해석적 방법에 의한 결과와 비교되었다.
계층적 p-세분화를 위해 Zienkiewicz-Zhu 오차평가법이 약간 수정되었으며, 이 방법의 유효성을 보이기 위해 휨을 받는 개구부를 갖는 Reinssner-Mindlin $C^{\circ}$-평판에 적용하였다. 유한요소해석상의 적응적 체눈을 결정하는 단계는 초수렴 팻취 복구기법에 기초를 둔 사후오차평가자와 연계된 p-세분화에 의해 제안되었다. 요소내의 변위장을 정의하기 위해 적분형 르장드르 고차 형상함수가 사용되는 반면 복구응력을 보간하기 위해 파스칼의 삼각수에 기초를 둔 같은 차수의 고차다항식이 사용되는 이유로 수정 Z/Z 오차평가는 종래의 방법과 다소 차이를 보여준다. 가우스 적분점에서의 응력을 최적화하기 위해 필요한 다항식으로 표현되는 응력함수를 얻기 위해 최소제곱법이 사용되었다. 고정된 요소망에 거의 최적의 형상함수 차수의 분배를 찾기 위한 전략이 논의되었는데, 허용되는 정확도를 얻을 수 있을 때까지 각 요소마다 형상함수의 차수를 불균등하게 증가시키는 방법으로, 소위 최적의 선택적 p-분배를 자동으로 결정하도록 되어있다. 위의 사항들을 L-형 평판 해석에 적용한 결과, 적응적 p-체눈설계 단계가 진행됨에 따라 자유도의 증가에 따라 오차량은 급격히 감소되는 것을 알 수 있었고, 제안된 오차 지시자에 의한 적응적 p-체눈 세분화는 최적 p-분배 진행방향에 근접하는 것을 볼 수 있었다.
h-version 유한요소법에 근거를 둔 형상최적화 설계에서는 초기모델의 기하형상에 대한 이상적인 체눈설계가 최종해석시에는 적합하지 않을 수 있게 된다. 그러므로, 최적화의 반복단계마다 모델의 단변형상에 대한 새로운 체눈설계가 필요하게 된다. 그러나 p-version 유한요소법은 형상최적화 문제 해석을 위한 매우 매력적인 대안으로 제시될 수 있다 p-version 유한요소법은 h-version 유한요소법과 비교하여 다음과 같은 큰 장점을 갖고 있다. 첫째로, 보간함수의 차수가 3차이상이 되면 요소의 찌그러진 형상에 대한 유한요소 해에 별 영향을 미치지 않는다. 둘째로, 심지어 응력특이 문제도 h-version에 비해 p-version은 적절한 체눈설계를 하게되면 훨씬 효율적이다. 셋째로, 초지 체눈설계와 최종 체눈설계가 동일하므로 반복단계마다 새롭게 체눈설계를 할 필요가 없어진다. Bezier의 곡선보간법, 경사투사법과 적분형 르장드르 다항식에 기초를 둔 2차원 형상최적화를 위한 p-version 모델이 제시되었다. 수치해석 경과는 p-version 소프트웨어인 RASNA를 사용하여 수행되었다.
직교이방성 적층평판해석을 위해 퇴화 쉘요소에 기초를 둔 p-version 유한요소법이 제안되었다. 이 모델의 비선형 정식화과정에서 기하비선형의 경우 von Karman의 대변형-소변형률 가정을 설명하기 위해 Total Lagrangian 방법이 채택되었으며, 재료비선형의 경우 Huber-Mises의 항복기준과 변형률경화 항복함수에 근거를 둔 Prandtl-Reuss 유동법칙이 사용되었다. 재료모델은 이방성을 표현하는 매개변수에 의해 이방겅재료를 고려할 수 있도록 하였다. 적층평판이론으로는 전단변형 효과를 고려할 수 있는 등가단출이론(ESL Theory)에 기초를 두었기 때문에 두 적층간 계면에서의 전단변형률은 연속이라는 조건을 갖게된다 적분형 르장드르 다항식이 형상함수로 사용되었으며 형상함수의 차수는 1차에서 10차까지 변화시킬 수 있다. 또한, Causs-Lobatto 수치적될법을 사용하기 때문에 기존의 가우스 적분점에서 계산되던 응력값은 이 적분법의 적분점이 절점에 위치하므로 절점에서 바로 응력값이 산출되도록 하였다 극한하중 수렴성, 비선형 효과, 소성역의 형상 등의 비교관점을 통해 p-version 유한요소 모델의 적정성을 보이고자 하였다.
면내거동과 휨거동을 받는 원형구멍을 갖는 유한평판에서 원형구멍 주위의 응력을 모델링하기 위해 p-version 유한요소법이 제시되었으며, 또한 동일한 문제로써 원형구멍으로부터 발생된 균열해석을 위해 균열확장법이 사용되었다. 적분형 르장드르함수에 기초한 p-version 유한요소법이 원형구멍 주위의 응력경사가 심한 기하형상을 모델링하는데 적합함을 보여준다. 한편, 원형 경계조건을 표현하는데 이산화오차를 피하기 위해 초유한사상기법이 사용되었다. 앞에서 제시된 방법을 통한 수치해석 결과는 Nisida, Howland, Newman 등의 실험 및 이론결과와 종래의 유한요소법에 의한 수치해석결과와 비교하여 우수한 값을 보여 주고 있다.
전단변형을 고려한 보강재요소를 p-version 유한요소법을 사용하여 정식화 하였다. 적분형 르장드르 다항식으로부터 유도된 계층적 C/sup 0/-형상함수를 5자유도를 갖는 보강재와 평판요소의 조립강성도 행렬을 정의하는데 사용하였다. 보강재와 평판의 접속부에서 변위의 적합성을 만족시키기 위해 적절한 좌표변환행렬을 사용하여 국부좌표계에서 정의된 보강재의 강성도 행렬을 기준좌표계인 평판의 좌표계로 변환시켰다. 평판의 기준좌표계에 대한 보강재의 방향과 편심효과를 설명할 수 있는 변환행렬이 평판과 보강재의 접속부에서의 국부적인 거동과 합성구조로 된 보강판에서 평판과 보강재가 감당하는 상대적인 강도 분담을 파악하기 위해 사용되었다. p-version 유한요소법에 의한 결과를 기존의 연구결과와 비교하였으며, 특히 h-version유한요소해석 프로그램인 MICROFEAP-II의 결과를 비교하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.