• Title/Summary/Keyword: 록볼트

Search Result 119, Processing Time 0.028 seconds

Behavior of grouted bolts in consideration of seep age forces (침투수력을 고려한 전면접착형 록볼트의 거동연구)

  • Lee, In-Mo;Kim, Kyung-Hwa;Shin, Jong-Ho;Nam, Seok-Woo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.7 no.3
    • /
    • pp.209-218
    • /
    • 2005
  • In a NATM tunnel, fully grouted bolts are widely used as part of supporting system. Grouted bolts play an important role not as to take some parts of load acting on the tunnel lining but as to reinforce the ground adjacent the tunnel. In conjunction with tunnel construction, the presence of groundwater may pose a number of difficulties. With respect to tunnel design, influences of groundwater on tunnel behavior have been considered in many aspects. However, the effect on grouted bolts has been rarely investigated. In this study, the behavior of grouted bolts, which are affected by the seepage forces, was examined. In order to investigate the effects of seepage forces, the theoretical solutions for a drained condition were proposed. Based on the theoretical solutions, ground reaction curves considering seepage forces were obtained. By comparing the ground reaction curves supported by grouted bolts with those for the unsupported cases, the effect of reinforcement was evaluated. Finally, through comparison between supported ground react ion curve s in the drained condition and those in the case of groundwater flow, it was observed that the grout ed bolts are more structurely beneficial when the seepage occurs towards the tunnel than when there is no groundwater flow.

  • PDF

3D Numerical Study on the Reinforcing Effect of Inclined System Bolting in NATM Tunnel (NATM 터널에서 경사 록볼트의 보강효과에 대한 3차원 해석)

  • Heo, June;Kim, Byoung-Il;Lee, Jea-Dug;Kim, Young-Geun
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.3
    • /
    • pp.29-36
    • /
    • 2017
  • It has been known that rockbolt is one of important supports improving the support capacity with shotcrete in NATM tunnel. Also, it is necessary for the inclined system bolting to enhance the efficiency of installation in case of a narrow space such as cross passage and enlargement tunnel. However, there is no profound technical study for the effect of inclined rockbolt of systematic installation on the support mechanism and ground behaviour in NATM tunnel. In this study, the effects of the length and installation angle of rockbolt on the characteristics of support and ground reinforcement were analyzed by using 3D finite element numerical study. Through the numerical results for the parametric modelling of inclined rockbolt, the characteristics of mechanical behaviors between the axial force of rockbolt and the effect of ground reinforcement in regard to the various factors of the length and installation angle of rockbolt were verified and reviewed thoroughly. Also, it was shown that the installation angle of rockbolt for enhancing the arching effect in NATM tunnel was $45^{\circ}$, and the difference of the reinforcing effect for support between the installation angles of $75^{\circ}$ and $90^{\circ}$ was insignificant. The additional numerical studies for various condition would be carried out for practical design guideline of inclined rockbolt.

Reinforcement Effect of Viscoplastic Rockboft - Numerical Study (록볼트 점소성 거동에 의한 지보효과 분석 - 수치해석)

  • 조태진;이정인
    • The Journal of Engineering Geology
    • /
    • v.3 no.3
    • /
    • pp.215-230
    • /
    • 1993
  • In-situ rock mass demonstrates the variety of structural features, and especially the mechanical and spatial characteristics of joint (or joint system) greatly affect the deformation and fallure strength of the rock mass. In this study finite element model capable of analyzing the viscoplastic behavior of reinforced jointed rock mass has been developed based on equivalent material approach. Accuracy and reliability of the numerical model have verified by simuiating the behavior of simplified block model and comparing the results with analytic solutions. Practical applicability was also demonstrated by analyzing the time-dependent behavior of underground oil storage tunnel and assessing the reinforcement effect of rockbolt.

  • PDF

The Evaluation on Applicability of Leakage-prevented Sealing Packer Out of Grouted Rockbolt Hole (록볼트 그라우팅 시 역류방지용 밀봉 패커의 적용성 평가)

  • Yang, Taeseon;Kim, Jichang;Jeong, Jongki;Yoo, Dongho;Choi, HakYun;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.17 no.11
    • /
    • pp.15-21
    • /
    • 2016
  • Nowadays, some studies have been performed for rockbolt method widely used in Korea. To make large slopes, tunnels or rock structures stable, supporting systems, such as anchor bolt, rock bolt which are developed recently, are commonly used. In this study, laboratory pullout tests were carried out to compare the characteristics of rock bolt that is most widely used with ones of rock bolt by newly developed circular model testers. Re-pullout test for the rock bolt in which loading and unloading cycles are repeated several times showed that the maximum pullout load is almost constant irrespective of the number of loading cycles, which may be due to no failure between rock bolt and filler that is filled with soils and concrete as a substitute. A development of rock bolt fillers as supporters using to protect people in tunnels and slopes is reviewed as a probable man-made hazard after excavation works. The functions of the grouted rock bolts associated with reinforcement effects also should be assessed in this study, which develop the sealing apparatus preventing from overflowing mortar out of a rock bolt hole for securing safety in the tunnel and slopes in order to secure stability named the sealing packer.

Rock Bolt Integrity Assessment in Time-Frequency Domain : In-situ Application at Hard Rock Site (유도파를 이용한 시간-주파수 영역 해석을 통한 록볼트 건전도 실험의 경암지반 현장 적용성 평가)

  • Lee, In-Mo;Han, Shin-In;Min, Bok-Ki;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.25 no.12
    • /
    • pp.5-12
    • /
    • 2009
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these structures. The purpose of this study is the evaluation of rock bolt integrity using wavelet transforms of the guided ultrasonic waves by using transmission test in the field. After several rock bolts with various defect ratios are embedded into a large scale concrete block and rock mass, guided waves are generated by a piezo disk element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the time-frequency domain using the wavelet transform based on a Gabor wavelet. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with an increase in the defect ratio. The suitable curing time for the evergy velocity analysis is proposed by the laboratory test, and in-situ tests are performed in two tunnelling sites to verify the applicability of rock bolt integrity tests performed after proposed curing time. This study proves that time-frequency domain analysis is an effective tool for the evaluation of the rock bolt integrity.

A Study on the Support Characteristics of the High Strength Lightweight Steel Pipe Rockbolt (경량 고강도 강관 록볼트의 지보특성에 관한 연구)

  • Kim, Jong Woo;Kim, Myeong Kyun;Kim, Dong Man;Kim, Kyung Hun;Baek, Jae Wook
    • Tunnel and Underground Space
    • /
    • v.24 no.5
    • /
    • pp.395-403
    • /
    • 2014
  • In this study, a steel pipe type rockbolt manufactured from special material was developed which has high strength and lightweight characteristics. Achievement of grout filling between rockbolt and hole wall was investigated through grout injection tests. Yield force of the developed rockbolt was also examined through tensile tests, which was compared with that of the deformed bar type rockbolt. In addition, the strength and elongation properties of the developed rockbolt were investigated through pull-out tests at three domestic sites showing different RMR classes. It is finally supposed that the developed rockbolt can be suitable for the permanent tunnel support because it has high strength and high durability rather than deformed bar type rockbolt.

Guidedwave-induced rockbolt integrity using Fourier and wavelet transforms (유도파에 대한 푸리에 및 웨이브렛 변환을 이용한 록볼트의 건전도 평가)

  • Lee, In-Mo;Kim, Hyun-Jin;Han, Shin-In;Lee, Jong-Sub
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.4
    • /
    • pp.403-413
    • /
    • 2007
  • As rock bolts become one of the main support systems in tunnels and underground structures, the integrity of the rock bolts affects the safety of these types of structures. The purpose of this study is the evaluation of rock bolt integrity using Fourier and wavelet transforms of the guided ultrasonic waves. After five rock bolt specimens with various defect ratios are embedded into a large scale concrete block, guided waves are generated by a PZT (lead zirconate titanate) element and measured by an acoustic emission (AE) sensor. The captured signals are analyzed in the frequency domain using the Fourier transform, and in the time-frequency domain using the wavelet transform based on a Gabor wavelet. The spectrum obtained from the Fourier transform shows that a portion of high frequency contents increases with increase in the defect ratio. Peak values in the time-frequency domain represent the interval of travel time of each echo. The energy velocities of the guided waves increase with the defect ratio. This study shows that the spectrum ratio and the energy velocity may be indicators fur the evaluation of rock bolt integrity.

  • PDF

Study on rock reinforcement process and the effect of produced strength right after rockbolt installation (록볼트의 타설 직후의 강도발현 과정 및 효과에 관한 연구)

  • Itoh, Jhun;Park, Hae-Geun;Kim, Dong-Wan;Kim, Jea-Kwon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.189-198
    • /
    • 2003
  • For the huge section of tunnel, it is highly required to observe the role of each rock support and their effect of rock reinforcement in order to investigate more reasonable rock support structure. Especially for unstable tunnel situation with no shotcrete strength right after an excavation, sufficient investigation is needed for rock support structure. In this paper, we clarify the relations of compressive strength and material age, cohesion strength and material age, and cohesion stiffness and material age of grout with time-dependence through tests and numerical analysis simulation with trial rock mass considering hardening of bolt grouting material. By means of this process, effect of rock reinforcement for rockbolt is investigated right after an excavation and modelling and physical constants of young aged rockbolts are obtained. Additionally, the effect of rock reinforcement with hydraulic tensile friction bolt is examined right after an excavation, which grout effect is no need to be waited.

  • PDF

A Study on the Application of GFRP Rock Bolt Sensor through Field Experiment and Numerical Analysis (현장실험과 수치해석을 통한 GFRP 록볼트 센서의 적용성 연구)

  • Lee, Seungjoo;Chang, Suk-Hyun;Lee, Kang-Il;Kim, Bumjoo;Heo, Joon;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.129-138
    • /
    • 2019
  • In this study, the rebar rock bolt sensor and GFRP rock bolt sensor, which can be monitored, were embedded in a large model slope, and the behavior of slopes occurred in the early stage of slope collapse was analyzed after performing the field failure test, numerical analysis of the individual element method and finite element method. By comparing and analyzing the field test and numerical analysis results, field applicability of rock slope collapse monitoring on the rebar rock bolt sensor and GFRP rock bolt sensor was investigated. Through this study, smart slope collapse prediction and warning system was developed, which can be used to induce effective evacuation of residents living in the collapsible area by detecting landslide and ground decay precursor information in advance.

Resisting Behavior of Fully-Grouted Rock Bolts with Compressible Spacers (압축성 간격재를 설치한 전면접착식 볼트의 인발저항 거동)

  • Hwang, Yong-Sub;Lee, Sang-Duk
    • Tunnel and Underground Space
    • /
    • v.21 no.5
    • /
    • pp.377-385
    • /
    • 2011
  • In order to prove the applicability of rock bolts with compressible spacers, laboratory model tests and large scale model tests were conducted. Laboratory model tests were performed in various distance of compressible spacers to determine the optimal distance of compressible spacers. The optimal distance of compressible spacers was found that is 1/4 of rock bolts unit length. Large scale model tests that the size was 0.6 m (diameter) ${\times}$ 4.45 m (length) were conducted. Test results showed that pull out resistance could be increased up to 15% larger than that of unused case by using compressible spacers.