• Title/Summary/Keyword: 로터 회전수

Search Result 151, Processing Time 0.025 seconds

A Dynamic Simulation and LQR Control for Performance Improvement of Small Gas Turbine Engine (소형 가스터빈엔진의 동적모사와 성능향상을 위한 LQR 제어)

  • 공창덕;기자영;김석균
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.1 no.1
    • /
    • pp.24-32
    • /
    • 1997
  • A nonlinear dynamic simulation of a small gas turbine engine was performed by using DYNGEN program with various environmental conditions. It was observed that the effect of the bleed air flow rate changed to overall engine performance. The real time linear model which was a function of engine rotor speed was resulted to be close to nonlinear simulation results. For optimal LQR controller, it was considered only fuel flow rate or both fuel flow rate and bleed air rate as inputs. In the comparison of both results, the LQR controller with multi input had better performance than that with single input.

  • PDF

Effect of Blade Angles on a Micro Axial-Type Turbine Operated in a Low Partial Admission Rate (부분분사 마이크로 축류형터빈에서의 익형각 효과에 관한 연구)

  • Cho, Soo-Yong;Cho, Bong-Soo;Cho, Chong-Hyun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.11 no.4
    • /
    • pp.10-18
    • /
    • 2007
  • A tested micro axial-type turbine consists of two stages and its mean radius of rotor flow passage is 8.4 mm. This turbine could be applied to a driver of micro power system, and its rotational speed in the unloaded state reaches to 100,000 RPM. The performance of this system is sensitive depending on the blade angles of the rotor and stator because it is operated in a low partial admission rate, so a performance test is conducted through measuring the specific output power and the net specific output torque with various blade angles on the nozzle, stator and rotor. The experimental results show that the net specific output torque is varied by 15% by changing the rotor blade angle, and the optimal incidence angle is about $10.3^{\circ}$.

An Experimental Study on the Pumping Performance of the Multi-stage Disk-type Drag Pump (다단 원판형 드래그펌프의 배기 성능에 관한 실험적 연구)

  • 권명근;허중식;황영규
    • Journal of the Korean Vacuum Society
    • /
    • v.12 no.2
    • /
    • pp.79-85
    • /
    • 2003
  • Experimental investigations are performed for the rarefied gas flows in a multi-stage disk-type drag pump. The pump considered in the present study consists of grooved rotors and stators. The flow-meter method is adopted to calculate the pumping speed. Compression ratios and pumping speeds for the nitrogen gas are measured under the outlet pressure range of 0.13∼533 Pa. The present experimental data show the leak-limited value of the compression ratio in the molecular transition region. The rotational speed of the pump is 24,000rpm, and nitrogen is used as a test gas. The pumping characteristics of various drag pumps are performed. The inlet pressures are measured for various outlet pressures of the test pump. The ultimate pressures for zero throughput are measured for three-stage, two-stage and single-stage disk-type, respectively.

Application and Performance Evaluation of Helicopter Active Vibration Control System for Surion (헬리콥터 능동진동제어시스템의 수리온 적용 및 성능 분석)

  • Kim, Do-Hyung;Kim, Tae-Joo;Paek, Seung-Kil;Kwak, Dong-Il;Jung, Se-Un
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.43 no.6
    • /
    • pp.557-567
    • /
    • 2015
  • The most decisive factor of major sources of a helicopter is the main rotor system and the rotor-induced vibration is one of the technical challenges which should be resolved to ensure comfort for crews and passengers. Passive vibration reduction devices are adopted in conventional helicopters and several types of passive devices are also used in Surion. In recent years, foreign helicopter manufactures have increasingly applied the application of AVCS (active vibration control system) because of their superior performance with lower weight compared to passive device. In addition to weight reduction, AVCS has advantages maintaining its performance over aircraft configuration changes and flight condition changes. The technology demonstration program was performed in order to validate the performance of AVCS when applied to Surion, and optimization process for finding optimal configuration of sensors and actuators. Optimal configuration was produced using ground and flight test data, and its performance was evaluated and compared with flight test result.

Nozzle Flow Characteristics and Simulation of Pesticide Spraying Drone (농약 살포 드론의 노즐 유동 특성 및 시뮬레이션)

  • Kang, Ki-Jun;Chang, Se-Myong;Ra, In-Ho;Kim, Sun-Woo;Kim, Heung-Tae
    • Smart Media Journal
    • /
    • v.8 no.4
    • /
    • pp.38-45
    • /
    • 2019
  • When there is a spray flow such as from a pesticide nozzle, winds affect the droplet flow of a rotary-wing drone accompanied by a strong wake, with a severe oscillation. Especially, during forwarding flights or when winds come from the side, compare to a simple hovering flight as the droplet is in the effect of aerodynamic drag force, the effect of spraying region becomes even larger. For this reason, the spraying of pesticides using drones may cause a greater risk of scattering or a difference in droplet dispersion between locations, resulting in a decrease in efficiency. Therefore, through proper numerical modeling and its applied simulation, an indication tool is required applicable for the various flight and atmospheric conditions. In this research, we completed both experiment and numerical analysis for the strong downwash from the rotor and flight velocity of the drone by comparing the probability density function of droplet distribution to build a spraying system that can improve the efficiency when spraying droplets in the pesticide spray drone.

Design of Nonlinear Controller for Variable Speed Wind Turbines based on Kalman Filter and Artificial Neural Network (칼만필터 및 인공신경망에 기반한 가변속 풍력발전 시스템을 위한 비선형 제어기 설계)

  • Moon, Dae-Sun;Kim, Sung-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.2
    • /
    • pp.243-250
    • /
    • 2010
  • As the wind has become one of the fastest growing renewable energy sources, the key issue of wind energy conversion systems is how to efficiently operate the wind turbines in a wide range of wind speeds. Compared to fixed speed turbines, variable speed wind turbines feature higher energy yields, lower component stress and fewer grid connection power peaks. Generally, measurement of wind speed is required for the control of variable speed wind turbine system. However, wind speed measured by anemometers is not accurate owing to various reasons. In this work, a new control algorithm for variable speed wind turbine system based on Kalman filter which can be used for the estimation of wind speed and artificial neural network which can generate optimum rotor speed is proposed. Also, to verify the feasibility of the proposed scheme, various simulation studies are carried out by using Simulink in Matlab.

A Research on Ball-Balancing Robot (볼 벨런싱 로봇에 관한 연구)

  • Kim, Ji-Tae;Kim, Dae-young;Lee, Won-Joon;Jin, Tae-Seok
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.05a
    • /
    • pp.463-466
    • /
    • 2017
  • The purpose of this paper is to develop a module capable of all-directional driving different from conventional wheeled robots, and to solve the problems of the conventional mobile robot with side driving performance degradation, It is possible to overcome the disadvantages such as an increase in the time required for the unnecessary driving. The all - direction spherical wheel drive module for driving a ball - balancing robot is required to develop a power transfer mechanism and a driving algorithm for driving the robot in all directions using three rotor casters. 3DoF (Axis) A driver with built-in forward motion algorithm is embedded in the module and a driving motor module with 3DoF (axis) for driving direction and speed is installed. The movement mechanism depends on the sum of the rotation vectors of the respective driving wheels. It is possible to create various movement directions depending on the rotation and the vector sum of two or three drive wheels. It is possible to move in different directions according to the rotation vector field of each driving wheel. When a more innovative all-round spherical wheel drive module for forward movement is developed, it can be used in the driving part of the mobile robot to improve the performance of the robot more technically, and through the forward-direction robot platform with the drive module Conventional wheeled robots can overcome the disadvantage that the continuous straightening performance is lowered due to resistance to various environments. Therefore, it is necessary to use a full-direction driving function as well as a cleaning robot and a mobile robot applicable in the Americas and Europe It will be an essential technology for guide robots, boarding robots, mobile means, etc., and will contribute to the expansion of the intelligent service robot market and future automobile market.

  • PDF

Evaluation of Dynamic Thrust Under Wind Shear in Wind Turbine Below Rated Wind Speed (정격풍속 이하에서 풍력터빈의 윈드쉬어 추력 동하중 개발)

  • Lim, Chae-Wook
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.4
    • /
    • pp.407-414
    • /
    • 2016
  • As wind turbines are getting larger in size with multi-MW capacity, the blades are getting longer, over 40 m, and hence the asymmetric loads produced during the rotation of the rotor blades are increasing. Some factors such as wind shear, tower shadow, and turbulence have an effect on the asymmetric loads on the blades. This paper focuses on a method of modeling the dynamic load acting on a blade because of thrust variation under wind shear. A method that uses thrust coefficient is presented. For this purpose, "wind shear coefficient of thrust variation" is defined and introduced. Further, we calculate the values of the "wind shear coefficient of thrust variation" for a 2 MW on-shore wind turbine, and analyze them for speeds below the rated wind speed. Then, we implement a dynamic model that represents the thrust variation under wind shear on a blade, using MATLAB/Simulink. It is shown that it is possible to express thrust variations on three blades under wind shear by using both thrust coefficient and "wind shear coefficient of thrust variation."

An Experimental Study of Aeroelastic Stability of Hingeless Hub System with Metal and Composite Hub Flexure (금속재와 복합재 허브 Flexure를 갖는 무힌지 허브시스템의 공력탄성학적 안정성에 관한 실험적 연구)

  • Song, Keun-Woong;Kim, Joune-Ho;Kim, Deog-Kwan;Rhee, Wook
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.2
    • /
    • pp.98-105
    • /
    • 2005
  • This paper presents the result of the aeroelastic stability test of the small-scaled hingeless hub system with composite paddle blades in hover and forward flight conditions. Excitation tests of hingeless hub system installed in GSRTS(General Small-scale Rotor Test System) at KARI(Korea Aerospace Research Institute) were carried out to get lead-lag damping ratio of blades with flexures as hub flexure. MBA(Moving Block Analysis) technique was used for the estimation of lead-lag damping ratio. First, blades with metal flexures, then with composite flexures of the same dynamic properties of rotor system as metal one were tested. Tests were done on the ground and in the wind tunnel according to the test conditions of hover and forward flight, respectively. Composite flexures were found to have better damping characteristics over metal ones in the non-rotating vibration test, and it was confirmed that the use of composite flexures would give observable improvement in aeroelastic stability compared to metal ones in all test conditions.

Design and Application of Database System for Dynamic Balancing Test of Helicopter Main Rotor Blade (헬리콥터 주로터 블레이드의 동적밸런싱 시험에 대한 데이터베이스 설계 및 적용)

  • Yoon, Byung-Il;Paek, Seung-Kil;Song, Keun-Woong;Kim, Deog-Kwan
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.8
    • /
    • pp.582-589
    • /
    • 2019
  • The dynamic balancing test of helicopter main rotor blades is a blade rotation test conducted on the ground to make the track of each blade and the load on each pitch rod to a similar level before the flight tests. The purpose of the test is to reduce the vibration occurring on main rotor system as a result of dissimilarity of each blade. The RTB test has been performed for a long period at Whirl Tower Test Facility located in Goheung Flight Centre, accumulating its data. As the amount of the results has become increasingly enormous the needs for the development of database system has been raised to manage the data with effective method. This research aimed to describe the development of Dynamic-Balancing Database System for the RTB test results. For the design of the database system the informations of RTB test results have been categorized into properties, connecting each others according to its logical meaning, and comprised into a database system with relational elements. It has been shown in this paper that the Dynamic Balancing database system enables to effectively accumulate the RTB test data and to be utilized for the data analysis.