• Title/Summary/Keyword: 로터 시스템

Search Result 406, Processing Time 0.026 seconds

An Experimental Study for Flow Characteristics Inside the Rotor of a Multiblade Fan/Scroll System (다익 팬/스크롤 시스템의 로터 내부 유동 특성에 관한 실험적 연구)

  • Maeng, Joo-Sung;Yoon, Joon-Yong;Ahn, Tae-Beom;Yoon, Jong-Eun;Hahn, Doug-Jeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.646-652
    • /
    • 1999
  • Detailed characteristics of the mean flow field inside the rotor of a multiblade fan with scroll are presented in this paper by measurements and visualizations. The measurements were taken with a five-hole probe and conformed by smoke test. How field is distinguished clearly in 3 regions with respect to the flow directions. The first region is near the exit of scroll where the fluid flows the opposite direction to the rotation of rotor. The second is opposite side of the scroll exit where the fluid flows the same direction to the rotation of rotor. The third is the region where the fluid flows toward the blades directly with the largest values comparatively. The strongest recirculation is happened in the second region, and the weakest one is in the third region. This complex configuration makes the flow field highly non-uniform and may cause to generate a noise and ineffective flow efficiency.

Stress Analysis of Gas-Gas Heater in Thermal Power Plant (화력발전용 가스재열기의 응력 해석)

  • Hwang, Suk-Hwan;Choi, Jae-Seung;Lee, Hoo-Gwang
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.1
    • /
    • pp.204-211
    • /
    • 2002
  • Today\`s industrialized plants are required to reduce SOx emitted from stacks at factories, utility power stations, etc. For this purpose, flue gas desulfurization(FGD) system is installed in thermal power plant and gas-gas heater(GGH) is used to play a vital role to reheat the wet treated gas from FGD. The sector plates are located at cold and hot sides of gas-gas heater. They serve as sealing to prevent mixing treated and untreated gases. Therefore, the deformation of the sector plate due to its dead weight and gas pressure should be considered as major factor for the sector plate design. And finite element analysis(FEA) for rotor part in GGH is performed with original model and two weight-reduced models with different diaphragm thickness, respectively. Stress concentrations at rotor diaphragm happen due to the dead weight, pressure difference between treated and untreated gas, and thermal distribution in the rotor. As the thickness of diaphragm is decreased, the stress level is increased. The direction of treated gas and untreated gas flow may affect the stress level.

The Vibration Characteristic and Fatigue Life Estimation of a Small-scaled Hingeless Hub System with Composite Rectangular Blades (복합재료 기준형 블레이드를 장착한 축소 힌지없는 허브시스템의 진동특성과 피로수명 예측)

  • Song, Keun-Woong;Kim, Jun-Ho;Kim, Duck-Kwan;Joo, Jin
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.11a
    • /
    • pp.310-315
    • /
    • 2003
  • This paper described that rotating test and fatigue test of a small-scale hingeless hub system with composite rectangular blades. Generally Rotating stability and fatigue test technique is one of Key-technology on test and evaluation for helicopter rotor system Rotating test of hingeless rotor system was achieved by means of rotor vibration characteristic and aeroelastic stability test GSRTS, equipped with hydraulic actuator and 6-component rotating balance was used to test hingeless rotor system especially for an observation of blade motion including flawing, lagging and feathering. Rotating test was done in hover and forward flight condition. Small-scaled blade fatigue test condition was determined by blade load analysis with the reference table of composite materials(S-N curve). Fatigue test bench was developed for the estimation of blade fatigue life, and tested its characteristic.

  • PDF

A Study on the Identifying Dynamic Characteristic Parameters of Rotor-bearing Systems Using Field Measurement Data of Unbalance Responses (현장 불평형 응답에 의한 로터-베어링 시스템 매개변수 규명에 관한 연구)

  • 이동환;박노길;김영일;이형우
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.14 no.8
    • /
    • pp.684-694
    • /
    • 2004
  • Presented in this dissertation is a new method of identifying the critical speed of rotor-bearing systems without actually reaching at the critical speed itself. Using the method, it is possible to calculate the critical speed by measuring a series of rotor responses at much lower rotating speeds away from and without reaching at the critical speed of the system. In the course of the procedures illustrated, not only the critical speed but also the damping ratio and the eccentricity of the system can be identified at the same time. Test rotor was tested on the Rotor Dynamics Test Facility at the Korea Institute of Machinery & Materials. Korea, and the theory has been confirmed experimentally. The method can be adopted to monitor changes of the dynamic characteristics of critical rotating machinery before and after overhauls, repairs, exchanges of various parts, or to detect trends or direction of subtle changes in the dynamic characteristic parameters over a long periods of time.

Design of a Hub BLDC Motor Driving Systems for the Patrol Vehicles (경계형 차량 구동용 허브 bldc 전동기 구동시스템 설계)

  • Park, Won-seok;Kunn, Young;Lee, Sang-hunn;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2013.10a
    • /
    • pp.612-615
    • /
    • 2013
  • Hub BLDC(Brushless Direct Current) motor, called wheel-in motor is a outer rotor type high efficient direct driving motor which have a multi-pole permanent magnet type rotor as a driving wheel. This study shows a hub BLDC motor speed controller design methode using PIC micro controller to drive 2 wheels or 3 wheels driving body having hub motor driving shaft. The motor driver unit consists of six discrete MOSFET switching devices and the gate driving module is directly designed for high economy.

  • PDF

Technology Trend of Vibration/Noise Active Control in Helicopter (헬리콥터 능동 진동/소음 제어 기법 해외 동향 및 사례)

  • Kim, Deog-Kwan;Yun, Chul-Yong;Chung, Ki-Hoon;Kim, Seung-Ho
    • Current Industrial and Technological Trends in Aerospace
    • /
    • v.9 no.1
    • /
    • pp.77-89
    • /
    • 2011
  • The vibration and noise reduction issue is very important in helicopter since the thrust and flight control force of helicopter are generated by rotating drive system. In past, there was a passive method to reduce vibration and noise to focus on specified frequency. Now, there are various active method to reduce vibration and noise due to technology development. This paper describes the worldwide technology trend of vibration and noise active control in helicopter. At introduction, generalmethod of vibration and noise reduction.

  • PDF

Shock Response Analysis of Rotor-Bearing System using the State-Space Newmark Method (상태공간 Newmark 기법을 이용한 로터-베어링 시스템의 충격응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Cheol;Kim, Yeong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.242-247
    • /
    • 2004
  • In this study was proposed a transient response analysis technique of a rotor system, applying the generalized FE modeling method of a rotor-bearing system considering a base-transferred shock force and together the state-space Newmark method of direct time integration scheme based on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system with series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and experimental results were carried out. The transient reponses of the rotor were sensitive to duration times and shape-qualities of the shock waves, and overally the analytical results agreed quite well with the experimental ones. Particularly, in cases that the frequencies, 1/(2×durationtime), of the shock waves were close to the critical speed of the rotor-bearing system, resonances occurred and the transient responses of the rotor were amplified.

  • PDF

Design of a Hub BLDC Motor Vector Control System for Patrol vehicle driving (경계형 차량 구동용 허브 BLDC 전동기 벡터제어 시스템 설계)

  • Park, Won-Seok;Son, Min-Ho;Lee, Min-Woo;Choi, Jung-keyng
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.05a
    • /
    • pp.380-383
    • /
    • 2014
  • Hub BLDC (Brushless Direct Current) motor is a multi-pole outer rotor-type high-efficiency electric motors and the Direct Drive Motor having permanent magnet rotor to drive shaft of the wheel, also called wheel-in motor. In this study, we design a speed controller with vector control technique using the dsPIC30f2010 16 bit micro-controller to drive Hub BLDC motor. Especially, we propose vector control method which reduce complex operation time, and design directly MOSFET inverter directly which gain high economics.

  • PDF

Analysis of Dynamic Behavior and Balancing of High Speed Spindle (고속 스핀들의 동적거동과 밸런싱 해석)

  • Koo, Ja-Ham;Kwon, Soon-Goo;Kim, Jong-Soon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.1
    • /
    • pp.238-244
    • /
    • 2017
  • A spindle with a built-in motor can be used to simplify the structure of a machine tool system, but the rotor inevitably has unbalanced mass. This paper presents an analysis of the dynamic behavior. The spindle was used in a CNC lathe and investigated using the finite element method and transfer matrices. The high-speed spindle can be very sensitive to the rotation of an unbalanced mass, which has a harmful effect on many machine tools. Thus, a balancing procedure was performed with a spindle-bearing system for the CNC lathe by numerical analysis. The balancing was performed through the influence coefficient method, and the whirl orbit radii before and after balancing were compared to evaluate the effects. The results show that the rotational speed of the spindle seriously affects the whirl responses of the spindle. The whirl responses were also affected by other factors, such as the unbalanced mass and bearing stiffness. The balancing of the assembled spindle model significantly reduced the whirl orbit magnitude.

Control Law Design for a Tilt-rotor Unmanned Aerial Vehicle with a Nacelle Mounted WE (Wing Extension) (체공성능 향상을 위한 확장날개 틸트로터 무인기의 제어법칙설계)

  • Kang, Young-Shin;Park, Bum-Jin;Cho, Am;Yoo, Chang-Sun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.11
    • /
    • pp.1103-1111
    • /
    • 2014
  • The results of control law design for a tilt-rotor unmanned aerial vehicle that has a nacelle mounted wing extension (WE) are presented in this paper. It consists of a control surface mixer, stability and control augmentation system (SCAS), hold mode for altitude / speed / heading, and a guidance mode for preprogram and point navigation which includes automatic take-off and landing. The conversion corridor and the control moments derivatives between the original tilt-rotor and its variant of the nacelle mounted WE were compared to show the effectiveness of the WE. The nacelle conversion of the original tilt-rotor starts when the airspeed is greater than 30 km/h but its WE variant starts at 0 km/h in order to reduce the drag caused by the high incidence angle of the WE. The stability margins of the inner loop are presented with the optimization approach. The outer loops for the hold mode are designed with trial and error methods with linear and nonlinear simulation. The main control parameter for altitude control of the helicopter mode is thrust command and it is transferred to the pitch attitude command in airplane mode. Otherwise, the control parameter for the speed of the helicopter mode is the pitch attitude command and it is transferred to the thrust command in airplane mode. Therefore the speed and altitude hold mode are coupled to each other and are engaged at the same time when an internal pilot engages any of the altitude or speed hold modes. The nonlinear simulation results of the guidance control for the preprogrammed mode and point navigation are also presented including automatic take-off and landing in order to prove the full control law.