• Title/Summary/Keyword: 로터허브

Search Result 70, Processing Time 0.026 seconds

Experimental Study on the Evolution of Tip Vortex Structures Generated by a Two-Bladed Rotor (2개의 블레이드로 구성된 회전익 끝와류들의 간섭 특성)

  • Sohn, Yong-Joon;Park, Byung-Ho;Han, Yong-Oun
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.35 no.7
    • /
    • pp.709-715
    • /
    • 2011
  • In order to observe the wake interaction between tip vortices generated by a two-bladed rotor with slightly different pitch angles, the velocity components of the tip vortices were measured by using a two-dimensional LDV system. It was observed that the swirl velocity components of the ensuing blade deviated from the Vatistas' n = 2 vortex model and the axial velocity components of the preceding blade deviated from the Gaussian profile. It was also found that in the wake-age range of $200^{\circ}$ to $240^{\circ}$, the filament of the ensuing blade tip vortex was stretched as result of the closing in of two vortices. The results from these observations suggest the possibility that a similar wake interaction is generated in actual rotor blades, especially, in the ones with articulated hubs.

Bearingless Rotor Hub Composite Component Fatigue Analysis of Utility Helicopter to perform the Basic Mission (기본임무를 수행하는 기동헬기에 적용될 무베어링 허브 복합재 구성품 피로수명 해석)

  • Kim, Taejoo;Kee, Youngjoong;Kim, Deog-kwan;Kim, Seung-ho
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2013.04a
    • /
    • pp.383-389
    • /
    • 2013
  • Rotor system is a very important part which produces lift, thrust and control force in helicopter. Component of rotor system must endure various flight load for the required life. In helicopter rotor system, bearingless rotor system is the highest technology rotor system compare with articulated and hingeless rotor system. Baaringless rotor system is not include mechanical flap hinge, lag hinge and pitch bearing. Bearingless rotor component flexbeam which made by composite material has conduct hinge and bearing role instead of mechanical flap hinge, lag hinge and pitch bearing. These characteristics has less part number and lass weight than others. In this paper, conduct safe life analysis of bearingless composite component flexbeam and torque tube applying to utility helicopter load condition.

  • PDF

Comparison of Aerodynamic Loads for Horizontal Axis Wind Turbine (II): with and without Vertical Wind Shear Effect (수평축 풍력터빈의 공력 하중 비교 (II): 수직 전단흐름 효과의 유·무)

  • Kim, Jin;Kang, Seung-Hee;Ryu, Ki-Wahn
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.5
    • /
    • pp.399-406
    • /
    • 2016
  • The large scale wind turbine blades usually experience periodic change of inflow speed due to blade rotation inside the ground shear flow region. Because of the vertical wind shear, the inflow velocity in the boundary layer region is maximum at uppermost position and minimum at lowermost position. These spatial distribution of wind speeds can lead to the periodic oscillation of the 6-component loads at hub and low speed shaft of the wind turbine rotor. In this study we compare the aerodynamic loads between two inflow conditions, i.e, uniform flow (no vertical wind shear effect) and normal wind profile. From the computed results all of the relative errors for oscillating amplitudes increased due to the ground shear flow effect. Especially bending moment and thrust at hub, and bending moments at LSS increased enormously. It turns out that the aerodynamic analysis including the ground shear flow effect must be considered for fatigue analysis.

Computational Structural Dynamic Analysis of a Gyrocopter Using CFD Coupled Method (CFD기법을 연계한 자이로콥터의 전산구조동역학 해석)

  • Kim Hyun-Jung;Jung Se-Un;Park Hyo-Keun;Yang Chang-Hak;Kim Dong-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.19 no.3 s.73
    • /
    • pp.295-302
    • /
    • 2006
  • In this study, computational structural dynamic analyses of a gyrocopter have been conducted considering unsteady dynamic hub-loads due to rotating blades. 3D CATIA models with detailed mechanical parts we constructed and virtually assembled into the complete aircraft configuration. The dynamic loading generated by rotating blades in the forward flight condition are calculated by a commercial computational fluid dynamics (CFD) code such as FLUENT. Modal based transient and frequency response analyses are used to efficiently investigate vibration characteristics of the gyrocopter. Free vibration analysis results for different fuel and pilot conditions, frequency responses and transient responses for critical flight conditions are also presented in detail.

Effect of Shroud Split on the Performance of a Turbopump Turbine Rotor (터보펌프 터빈 로터의 슈라우드 스플릿이 성능에 미치는 영향)

  • Lee, Hanggi;Jeong, Eunhwan;Park, Pyungoo;Yoon, Sukhwan;Kim, Jinhan
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.17 no.4
    • /
    • pp.25-31
    • /
    • 2013
  • A blisk with rotor shroud is usually adopted in LRE turbine to maximize its performance. However it experiences the severe thermal load and resulting damage during engine stating and stop. Shroud splitting is devised to relieve the thermal stress on the turbine rotor. Structural analysis confirmed the reduction of plastic strain at the blade hub and tip. However, split gap at the rotor shroud entails additional tip leakage and results performance degradation. In order to assess the effect of shroud split on the turbine performance, tests have been performed for various settings of shroud split. For the maximum number of shroud splitting, measured efficiency reduction ratio was 2.65% to the value of original shape rotor.

Experimental Study on the Aerodynamic Interaction of the Rotor and Stator for the Ducted fan UAV (덕티드 팬 무인기의 동익과 정익 공력상호작용에 대한 실험적 연구)

  • Ryu, Min-Hyoung;Cho, Lee-Sang;Cho, Jin-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.387-391
    • /
    • 2009
  • The experimental study on the ducted fan for the propulsion system of a small UAV has been performed. In this paper, to investigate the three-dimensional unsteady flow field characteristics of the ducted fan, it was measured by using a $45^{\circ}$ inclined hot-wire from hub to tip at inlet, behind the rotor and outlet of the ducted fan. The hot-wire signal data was acquired at fixed yaw angle. The data was averaged by using the PLEAT (Phase Locked Ensemble Averaging Technique), and then three of non-linear equations were solved simultaneously by using the Newton-Rhapson numerical method. Flow characteristics such as tip vortex, secondary flow and tip leakage flow were confirmed through axial, radial and tangential contour plot.

  • PDF

Fundamental Study on the HAT Tidal Current Power Rotor Performance by CFD (CFD를 이용한 수평축 조류발전 로터 성능의 기초연구)

  • Jo, Chul-Hee;Yim, Jin-Young;Lee, Kang-Hee;Chae, Kwang-Su;Rho, Yu-Ho;Song, Seung-Ho
    • New & Renewable Energy
    • /
    • v.5 no.2
    • /
    • pp.3-8
    • /
    • 2009
  • Tidal current power system is one of ocean renewable energies that can minimize the environmental impact with many advantages compared to other energy sources. Not like others, the produced energy can be precisely predicted without weather conditions and also the operation rate is very high. To convert the current into power, the first device encountered to the incoming flow is the rotor that can transform into rotational energy. The performance of rotor can be determined by various design parameters including numbers of blade, sectional shape, diameter, and etc. The stream lines near the rotating rotor is very complex and the interference effects around the system is also difficult to predict. The paper introduces the experiment of rotor performance and also the fundamental study on the characteristics of three different rotors and flow near the rotor by CFD.

  • PDF

An Experimental Study for Flow Characteristics Inside the Rotor of a Multiblade Fan/Scroll System (다익 팬/스크롤 시스템의 로터 내부 유동 특성에 관한 실험적 연구)

  • Maeng, Joo-Sung;Yoon, Joon-Yong;Ahn, Tae-Beom;Yoon, Jong-Eun;Hahn, Doug-Jeon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.23 no.5
    • /
    • pp.646-652
    • /
    • 1999
  • Detailed characteristics of the mean flow field inside the rotor of a multiblade fan with scroll are presented in this paper by measurements and visualizations. The measurements were taken with a five-hole probe and conformed by smoke test. How field is distinguished clearly in 3 regions with respect to the flow directions. The first region is near the exit of scroll where the fluid flows the opposite direction to the rotation of rotor. The second is opposite side of the scroll exit where the fluid flows the same direction to the rotation of rotor. The third is the region where the fluid flows toward the blades directly with the largest values comparatively. The strongest recirculation is happened in the second region, and the weakest one is in the third region. This complex configuration makes the flow field highly non-uniform and may cause to generate a noise and ineffective flow efficiency.

Study on Adaptive Higher Harmonic Control Using Neural Networks (신경회로망을 이용한 적응 고차조화제어 기법 연구)

  • Park, Bum-Jin;Park, Hyun-Jun;Hong, Chang-Ho
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.33 no.3
    • /
    • pp.39-46
    • /
    • 2005
  • In this paper, adaptive higher harmonic control technique using Neural Networks (NN) is proposed. First, linear transfer function is estimated to relate the input harmonics and output harmonics, then NN which has the universal function approximation property is applied to expand application range of the transfer function. Optimal control gain matrix computed from the transfer function is used to train NN weights. Online weight adaptation laws are derived from Lyapunov's direct method to guarantee internal stability. Results of the simulation of 6-input 2-output nonlinear system show that adaptive HHC is applicable to the system with uncertain transfer function.

Study on Manufacturing Process of Hollow Main Shaft by Open Die Forging (자유단조공법을 통한 중공형 메인샤프트 제조공정에 관한 연구)

  • Kwon, Yong Chul;Kang, Jong Hun;Kim, Sang Sik
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.2
    • /
    • pp.221-227
    • /
    • 2016
  • The main shaft is one of the key components connecting the rotor hub and gear box of a wind power generator. Typically, main shafts are manufactured by open die forging method. However, the main shaft for large MW class wind generators is designed to be hollow in order to reduce the weight. Additionally, the main shafts are manufactured by a casting process. This study aims to develop a manufacturing process for hollow main shafts by the open die forging method. The design of a forging process for a solid main shaft and hollow shaft was prepared by an open die forging process design scheme. Finite element analyses were performed to obtain the flow stress by a hot compression test at different temperature and strain rates. The control parameters of each forging process, such as temperature and effective strain, were obtained and compared to predict the suitability of the hollow main shaft forging process. Finally, high productivity reflecting material utilization ratio, internal quality, shape, and dimension was verified by the prototypes manufactured by the proposed forging process for hollow main shafts.