• Title/Summary/Keyword: 로켓 추진기관

Search Result 223, Processing Time 0.019 seconds

The Way of Determinating the Optimal Parameters of the Propellant Tank Pressurization Gas in the Feeding System for Liquid Rocket Engine (액체로켓 추진기관의 추진제탱크 가압시스템 최적변수 설계 방법)

  • Bershadskiy V.A.;Cho Kie-Joo;Lim Seok-Hee;Jung Young-Suk;Cho Gyu-Sik;Oh Seung-Hyub
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.9 no.2
    • /
    • pp.62-69
    • /
    • 2005
  • The design method to calculate the main features of propellant tank pressurization system during the development procedure of propellant feed system of the liquid rocket engine was suggested. We have considered the influences of parameters of pressurization gas on the efficiency of the thermodynamic processes in the tank. The optimum value of temperature and velocity of pressurization gas at the entrance of tank are obtained by the suggested way.

A Development of Insensitive Munitions Technologies for Tactical Rocket Motors (고체추진기관 둔감화 기술 개발동향)

  • Yoo, Ji-Chang;Kim, Chang-Kee;Hwang, Kab-Sung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.213-216
    • /
    • 2008
  • U. S. and NATO allies have recently increased their emphasis on reducing the hazards of tactical munitions that contain energetic materials and actively started many investigations on Insensitive munitions(IM) of missile propulsion. All subcomponents of rocket motor should be properly designed and understood to increase IM properties. Insensitive propellant, motor case, ignitor and mitigation devices are important components of IM technologies of rocket motors.

  • PDF

Study on Composite Solid Propellants for Rocket Assisted Projectile (혼합형 고체추진제의 RAP(Rocket Assisted Projectile) 적용연구)

  • Kim, Kyung-Moo;Cho, Joon-Hyun;Jeong, Deok-Jin
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.38 no.11
    • /
    • pp.1081-1086
    • /
    • 2010
  • The technical procedure of an enhancement of a 120 mm rocket assisted projectile has here addressed by analyzing the ballistic performance with several the solid rocket propellants and shell designs. The performance was evaluated by aero-ballistic analyses and static ground tests of the rocket motor. Consequently, firing tests showed that one of tested models gave about 70% of extended range compared with conventional projectiles.

Development Status and Study of the Sounding Rocket (국내외 Sounding Rocket 개발현황 및 발전방향)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.466-475
    • /
    • 2011
  • This paper presents development status of sounding rockets containing scientific payload and telemetry at home and abroad. The case of outside, United States is launching sounding rockets in 20-30 flights per year by the NASA program which offers to carry payload weights of 38-680 kg and altitude of 88-1500 km. Europe is launching in 4-5 flights per year by the ESA program. The case of Korean sounding rockets was successful with the launch of three times(KSR-I,II,III), but Korea lags far behind the advanced countries in the field of development technologies for space launch vehicle. We expect that our scientific and industrial technologies will be improved through the research and development of sounding rockets. In this study we proposed necessity and future direction of development in domestic sounding rockets.

  • PDF

Development Status and Study of the Sounding Rocket (국내외 Sounding Rocket 개발현황 및 발전방향)

  • Kim, Jin-Yong;Rho, Tae-Ho;Lee, Won-Bok;Suh, Hyuk;Rhee, Young-Woo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.15 no.3
    • /
    • pp.70-79
    • /
    • 2011
  • This paper presents development status of sounding rockets containing scientific payload and telemetry at home and abroad. The case of outside, United States is launching sounding rockets in 20-30 flights per year by the NASA program which offers to carry payload weights of 38-680 kg and altitude of 88-1500 km. Europe is launching in 4-5 flights per year by the ESA program. The case of Korean sounding rockets was successful with the launch of three times(KSR-I,II,III), but Korea lags far behind the advanced countries in the field of development technologies for space launch vehicle. We expect that our scientific and industrial technologies will be improved through the research and development of sounding rockets. In this study we proposed necessity and future direction of development in domestic sounding rockets.

Bullet Impact Tests for Solid Rocket Motor (고체추진기관의 탄환충격시험)

  • 윤현걸;류병태;최창선
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.4
    • /
    • pp.114-122
    • /
    • 2000
  • Bullet impact tests for solid rocket motor were performed and its results wert described. Two motors were made of composite and steel for case material, respectively and their reactions to the bullet impact were compared. Throughout the tests it had been tried to setup the procedure of bullet impact test and criteria of the judgment for the reactions.

  • PDF

새로운 에너지물질 분자의 설계기술 동향

  • Lee, Jun-Ung
    • Defense and Technology
    • /
    • no.4 s.290
    • /
    • pp.18-29
    • /
    • 2003
  • 냉전의 또 하나의 부산물은 우주경쟁인데, 인공위성 등 발사체의 추진기관은 거의 예외 없이 액체연료를 사용하는 액체추진로켓이고, 이것의 연료가 되는 액체산소, 액체수소 등은 발사체에 저장된 상태로 보관 할 수 없다는 단점 때문에 거의 군사용으로 적용되고 있지 않다. 지금은 SATURN-V와 같은 거대한 액체 추진 로켓을 대신해서 부분적으로 재활용이 가능한 우주왕복선이 사용되고 있는데, 여기에는 처음 이륙단계 대부분의 추력을 고체추진제에 의존하고 있기 때문에 이들의 성능 향상을 위한 좀 더 강역하고, 안전성을 높일 수 있는 에너지 물질에 대한 요구가 증대되고 있는 실정이다.

  • PDF

Verification Test of KSR-III Liquid Propellant Rocket Prototype Engine (KSR-III 액체추진로켓 시제엔진 검증시험)

  • 하성업;류철성;설우석
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.5 no.4
    • /
    • pp.67-74
    • /
    • 2001
  • Based on the national space development project, the necessity of developing liquid propellant rocket engine is revealed to secure the basic technology for the development of individual artificial-satellite launcher. Consequently, KARI (Korea Aerospace Research Institute) is developing a liquid propellant rocket engine for the KSR-III. Currently, a prototype engine using kerosene/LOx which produces 13-ton thrust is designed, fabricated and tested. In this paper, test procedure and technique for liquid propellant rocket engine are introduced with the analysis of static and dynamic test data.

  • PDF

Introduction to the Propulsion Systems for the Next Generation Flight Vehicles (차세대 비행체 추진기관 시스템 소개)

  • 이대성;양수석;차봉준;한영민;김춘택
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.4 no.3
    • /
    • pp.74-82
    • /
    • 2000
  • The concept and characteristics of the propulsion systems for the next generation flight vehicles are described in this paper, where Hey are grouped into air breathing engine, rocket engine and combined cycle engine according to the feeding system of oxidizer. Air breathing engine has its good reusability and superior performance at low altitude, but its usage is limited at high altitude due to the decreased air density. Rocket engine can be used over the wide range of altitude, but it has disadvantages in low specific impulse and high cost. The several types of combined cycle engine, which are being developed by the leading countries in the aerospace, are highlighted as a remarkable candidate for the next generation propulsion system.

  • PDF

Introduction to Construction of Propulsion Test Facilities for KSLV-II (한국형발사체 추진기관 시험설비 구축에 대한 소개)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon;Kim, Young-Mog
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.343-346
    • /
    • 2010
  • The construction plan of a combustion chamber test facility(CTF), a turbopump real propellant test facility(TPTF), a rocket engine ground/high altitude test facility(ReTF, HAReTF) and a propulsion system test complex(PSTC) for KSLV-II is briefly described. The development/qualification tests of 75ton-class liquid rocket engine system and engine component will be performed in CTF, TPTF, ReTF and HAReTF and the development test of $1^{st}/2^{nd}/3^{rd}$ propulsion systems for KSLV-II will be performed in PSTC. These propulsion test facilities will be built in NARO space center considering construction schedule, cost, safety distance and utility factor of propulsion test facilities.

  • PDF