• Title/Summary/Keyword: 로켓형 연소기

Search Result 162, Processing Time 0.02 seconds

Combustion Performance Tests of Fuel-Rich Gas Generator for Liquid Rocket Engine Using an Impinging Injector (충돌형 분사기 형태의 액체로켓엔진용 가스발생기 연소성능시험)

  • 한영민;김승한;문일윤;김홍집;김종규;설우석;이수용;권순탁;이창진
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.8 no.2
    • /
    • pp.10-17
    • /
    • 2004
  • The results of the combustion performance tests of gas generator which supplies hot gas into the turbine of turbo-pump for liquid rocket engine and uses LOx and kerosene as propellant are described. The gas generator consists of a injector head with F-O-F impinging injector, a water cooled combustion chamber, a gas torch igniter, a turbulence ring and an instrument ring. The effect of turbulence ring and combustion chamber length on performance of gas generator are investigated. The ignition and combustion at design point are stable and the pressure and gas temperature at gas generator exit meets the target. The turbulence ring installed at middle of chamber effectively mixes hot gas with cold gas and the effect of residence time of hot gas in gas generator on combustion efficiency is small. Test results show that the main parameter controlling the gas temperature at gas generator exit is overall O/F ratio.

Effect of Chamber Configuration on Combustion Characteristic Velocity of Full-scale Combustion Chamber (실물형 연소기의 형상에 따른 연소특성속도 비교)

  • Kim, Jong-Gyu;Han, Yeoung-Min;Ahn, Kyu-Bok;Kim, Mun-Ki;Seo, Seong-Hyeon;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2008.05a
    • /
    • pp.149-152
    • /
    • 2008
  • Effects of chamber configuration on combustion characteristic velocity of full-scale combustion chamber for 30-tonf-class liquid rocket engine were studied. The configurations of combustion chamber are ablative and channel cooling chamber (${\varepsilon}$=3.2) which have detachable mixing head, and single body regenerative cooling chamber which has nozzle expansion ratio of 3.5 and 12, respectively. The combustion chambers have chamber pressure of 53${\sim}$60 bar and propellant mass flow rate of 89 kg/s, and the injectors of all combustion chamber have recess number 1.0 and double-swirl characteristics. The hot firing test results at design point show that the combustion characteristic velocity of the regenerative cooling chamber which has nozzle expansion ratio of 12 is higher than that of other combustion chambers. The reasons for the above result are the increases of combustion pressure and enthalpy of kerosene which is heated due to cooling of the chamber wall before injection into the combustion field.

  • PDF

Effect of Momentum Flux Ratio on Combustion Instabilities in a Model Combustor with a Gas-Centered Swirl Coaxial Injector (기체 중심 스월 동축형 분사기가 장착된 모형연소기의 운동량비 변화에 따른 연소불안정성 분석)

  • Sohn, Chae Hoon;Kim, Myeong Sub;Wang, Yuangang;Yoon, Youngbin
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.4
    • /
    • pp.25-32
    • /
    • 2020
  • A numerical study on combustion instabilities in a model combustor was conducted with various momentum flux ratios. Five ratios are calculated based on an actual operating condition of rocket engine. As momentum flux ratio increases, the spreading angle on the injector outlet decreases. And, as increase of axial momentum flux, pressure fluctuation decreases inside the combustor. By using dynamic mode decomposition method, the acoustic modes inside the combustor are identified. Combustion stabilities are analyzed by comparing the damping coefficient of the 2nd longitudinal mode.

Reliability Prediction of Liquid Rocket Engines for Different Propellant and Engine Cycles (추진제 및 연소 사이클을 고려한 액체로켓 엔진의 신뢰도 예측)

  • Kim, Kyungmee O.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.2
    • /
    • pp.181-188
    • /
    • 2016
  • It is known that reliability of liquid rocket engines depends on the design thrust, propellant, engine cycle, and hot firing test time. Previously, a method was developed for estimating reliability of a new engine by adjusting the design thrust and hot firing test time of reference engines where reference engines have the same propellant and engine cycle with the new engine. In this paper, we provide a procedure to predict the engine reliability when the new engine and the reference engine have different propellant and engine cycles. The proposed method is illustrated to estimate the engine reliability of the first stage of Korea Space Launch Vehicle II.

Effect of Gas-Liquid Scheme Injector on Acoustic Damping in Liquid Rocket Engine (액체 로켓엔진 분사기의 음향감쇠 효과에 관한 연구)

  • Park I-Sun;Kim Seong-Ku;Sohn Chae Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.10a
    • /
    • pp.19-22
    • /
    • 2004
  • In the future engine with high performance, the gas-liquid scheme injectors will be adopted and the role of the injector as an acoustic resonator is investigated as an advanced study The injector can play a significant role in acoustic damping and the optimum length of the injector to maximize the damping capacity is calculated as a function of baffle length.

  • PDF

Performance Test of the Liquid Rocket Engine of 400Ib Thrust (추력 400 파운드급 액체 로켓엔진의 성능시험)

  • 이수용;윤웅섭;채연석;조용호;김경호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.209-212
    • /
    • 1996
  • 접촉발화성 액체추진제를 사용하는 소형 추진기관의 성능을 확인하기 위해 핵심 부품의 상온 성능 시험 및 추진기관 조립품의 연소성능시험을 실시하여 추력 400 파운드급의 로켓엔진의 설계성능을 확인하였다. 로켓엔진의 성능측정은 요소분사기의 미립화, 혼합성능의 측정을 위한 상온수류시험과 추진기관 조립체의 지상연소시험으로 실시하였으며, 연소성능은 산화제로 질산을 연료로는 아민계 혼합물로 구성된 접촉발화형 이원 액체추진제를 사용하여 가압방식에 의해 연소실에 분사하는 방법으로 수행하였다. 성능시험결과는 설계성능 및 이상성능과 비교함으로서 이들의 상관관계를 파악하였다.

  • PDF

Development of Bulging Process for Regenerative Cooling Nozzle of Liquid Rocket Thrust Chamber (액체로켓 연소기 재생냉각형 노즐의 벌징 공정 개발)

  • Ryu, Chul-Sung;Choi, Hwan-Suk
    • Aerospace Engineering and Technology
    • /
    • v.7 no.2
    • /
    • pp.103-109
    • /
    • 2008
  • A study has been conducted on the bulging process of regenerative cooling nozzle which is essential for the manufacturing of liquid rocket thrust chamber. Tension tests have been performed for the material to be used for the development of the bulging process and mechanical properties are obtained by the test. Two or three bulging tools were required to complete the bulging process. The necking of the material was a major failure encountered in the bulging process and a research has revealed that grain size of the material has considerable effect on its occurrence. The presently developed bulging process with a controlled grain size material has been successfully applied to the manufacturing of subscale and 30-tonf full scale regeneratively cooled nozzle while demonstrating the applicability and usefulness of the presently developed bulging process.

  • PDF

A Study on the Flow Conditions of the Combustion Air Heater Outlet for the Supersonic Combustion Experiment (초음속 연소 실험을 위한 연소식 공기 가열기 출구 유동 조건 실험 연구)

  • Lee, Eun Sung;Han, Hyung-Seok;Lee, Jae Hyuk;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.26 no.1
    • /
    • pp.88-97
    • /
    • 2022
  • In this study, a vitiated air heater was designed and manufactured to supply high-temperature and high-pressure air to the ground test apparatus of a direct-connected supersonic combustor, and an experiment was performed to verify the target design point. By installing wedges at the upper boundary, lower boundary and center of the nozzle exit of the vitiated air heater, it was confirmed that the Mach number satisfies the 2.0 level, and the pressure of the combustion chamber was also satisfactory compared to the design point. In the case of temperature, the measured temperature deviation was large due to the degree of exposure of the thermocouple and the slow response characteristics. After that, the isolator was connected to the rear of the vitiated air heater, and the Mach number was measured in the same method, and the Mach number at the center of the isolator eixt was slightly reduced to 1.8~1.9.

Opening Characteristics of a Main Oxidizer Shut-off Valve (연소기 산화제 개폐밸브 개방 특성)

  • Hong, Moongeun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.11
    • /
    • pp.989-997
    • /
    • 2017
  • We study opening transient responses of a self-sustainable poppet valve, which is usually used for the main oxidizer shut-off valve of liquid rocket engines. In order to perform numerical analysis, a pneumatic supply system was simulated as an orifice with a diameter of 3.2 mm and the equations of motion of valve moving part were derived. For the validation of the study, a comparison of numerical predictions and experimental results has been done. As one of the practical applications of this study, the employment of an orifice in a high pneumatic pressure has been presented to control the valve opening time.

Fabrication of Full-Scale Combustion Chamber of Liquid Rocket Engine for Ground Hot Firing Tests (실물형 고압 연소기의 연소시험 검증용 제작)

  • Kim Jonggyu;Seo Seonghyeon;Kim Seunghan;Han Yeoungmin;Ryu Chulsung;Seol Wooseok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.305-308
    • /
    • 2005
  • This paper presents a fabrication of a full-stale combustion chamber of a liquid rocket engine for a ground hot firing test. Engine drawings for manufacturing were prepared after conceptual and detail designs. The combustor is composed of a head and a chamber. SUS316L is used for materials of the head because of the good quality in low temperature. Inner materials of the ablative cooling chamber is silica/phenolic and outer case materials is the SUS316L. Materials of the regenerative cooling chamber are C18200 and SUS316L. After lathe, general milling and MCT machinings, components were finished by electrolytic polishing. A brazing method was applied for bonding the injectors and the injector plate, the regenerative cooling chamber because of structure configurations.

  • PDF