• Title/Summary/Keyword: 로켓연소실

Search Result 320, Processing Time 0.019 seconds

Design Review of Combustion Chamber/Turbo-pump Test Facility of Liquid Rocket Engine for KSLV-II (한국형발사체 액체엔진 연소기 및 터보펌프 시험설비 배치 및 설계에 대한 검토)

  • Han, Yeoung-Min;Cho, Nam-Kyung;Chung, Young-Gahp;Kim, Seung-Han;Yu, Byung-Il;Lee, Kwang-Jin;Kim, Jin-Sun;Kim, Ji-Hoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.04a
    • /
    • pp.109-112
    • /
    • 2011
  • The result of design review and arrangement of a combustion chamber test facility(CTF) and a turbo-pump real propellant test facility(TPTF) is briefly described. The development/qualification tests of combustion chamber and turbo-pump for 75ton-class liquid rocket engine will be performed in CTF and TPTF. The critical design of hydraulic-pneumatic system, control and data acquisition system, test stand cell, and auxiliary facilities in CTF and TPTF was performed.

  • PDF

A Comparative Analysis for the Performance of 200 N-class Gaseous Methane-Liquid Oxygen Small Rocket Engine According to the Characteristic Length Variation (특성길이 변화에 따른 200 N급 기체메탄-액체산소 소형로켓엔진의 성능 비교 분석)

  • Kang, Yun Hyeong;Ahn, Hyun Jong;Kim, Jeong Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.24 no.6
    • /
    • pp.85-92
    • /
    • 2020
  • Ground hot-firing tests were conducted to analyze the combustion performance according to the characteristic lengths 1.37 m, 1.71 m, and 2.06 m of the combustion chamber in 200 N-class GCH4-LOx small rocket engine. Thrust, specific impulse, and characteristic velocity at the steady-state could be obtained as the key performance parameters of the rocket engine. The performance characteristics acquired through the test were compared and analyzed with the theoretical performance calculated from CEA analysis. Observation of the influence of characteristic length on the combustion performance indicates that an optimal characteristic length shall remain between 1.71 m and 2.06 m.

Study on Standards of Combustion Stability Assessment of Liquid Rocket Engine Combustion Devices (액체로켓 엔진 연소장치의 연소 안정성 평가 기준에 대한 연구)

  • Seo, Seong-Hyeon;Lee, Kwang-Jin;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.13 no.6
    • /
    • pp.34-40
    • /
    • 2009
  • The present study describes the methods and standards for the combustion stability assessment of a thrust chamber and a gas generator as parts of a liquid rocket engine. The first method uses a statistical approach through typical static combustion tests and the second one a dynamic assessment identifying decaying characteristics of pressure fluctuations excited by a pulse generating device. Based on accumulated test results, it is concluded that the maximal values for combustion stability are 3% of a chamber static pressure with a Root-Mean-Square value of pressure fluctuations, and 10 msec with a decay time.

Performance Test of the Liquid Rocket Engine of 400Ib Thrust (추력 400 파운드급 액체 로켓엔진의 성능시험)

  • 이수용;윤웅섭;채연석;조용호;김경호
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1996.11a
    • /
    • pp.209-212
    • /
    • 1996
  • 접촉발화성 액체추진제를 사용하는 소형 추진기관의 성능을 확인하기 위해 핵심 부품의 상온 성능 시험 및 추진기관 조립품의 연소성능시험을 실시하여 추력 400 파운드급의 로켓엔진의 설계성능을 확인하였다. 로켓엔진의 성능측정은 요소분사기의 미립화, 혼합성능의 측정을 위한 상온수류시험과 추진기관 조립체의 지상연소시험으로 실시하였으며, 연소성능은 산화제로 질산을 연료로는 아민계 혼합물로 구성된 접촉발화형 이원 액체추진제를 사용하여 가압방식에 의해 연소실에 분사하는 방법으로 수행하였다. 성능시험결과는 설계성능 및 이상성능과 비교함으로서 이들의 상관관계를 파악하였다.

  • PDF

Combustion Test of Regenerative Cooling Combustor for Liquid Rocket Engine (실물형 재생냉각 액체로켓엔진 연소기(확대비3.5) 연소시험)

  • Yang, Seung-Ho;Kim, Hee-Tea;Kang, Dong-Hyuk;Ahn, Kyu-Bok;Seo, Seong-Hyeon;Han, Yeoung-Min;Choi, Hwan-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2007.11a
    • /
    • pp.125-130
    • /
    • 2007
  • Firing tests have been performed for a 30 tonf-class full-scale regeneratively cooled combustion chamber. It was the first model which has welded construction of the injection head and the combustion chamber. A number of firing tests have been performed to evaluate combustion efficiency, regenerative cooling performance and durability of the combustor. This paper describes the results of firing tests performed at the design and off-design conditions which correspond to the chamber pressure of 60 bar, 68 bar respectively and the O/F ratio of 2.5 and 2.8 respectively. The data at each test condition have provided successful results in terms of combustion performance, combustion stability and durability. The tests are considered to be quite meaningful in the sense that the technologies for kerosene regeneratively cooled combustion chamber are successfully proven.

  • PDF

로켓 엔진 연소 성능에 관한 이론적.실험적 평가

  • Kim, Yong-Wook;Kim, Young-Han;Jung, Yong-Gap;Cho, Nam-Gyung;Park, Jung;Oh, Seung-Hyup
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 1999.10a
    • /
    • pp.8-8
    • /
    • 1999
  • 로켓 엔진 설계는 연소 과정 동안에 발생하는 모든 복잡한 현상을 고려하여 이루어져야하지만 이러한 물리적 변수들을 만족시키면서 설계를 하는 것은 불가능하기 때문에 최근 수치 해석의 발달로 내부 연소 과정에 대환 체계적 접근이 활발히 진행되고는 있으나 아직은 경험과 직관에 따라 각 변수의 중요성을 판단하고 있다고 해도 과언은 아니다. 최근 RP-1과 액체 산소를 추진제로 하는 연소실 압력 200psi, 최대 추력 2.8$\times$$10^{5}$lbf의 액체 엔진 개발을 목표로 본 연구팀은 분사기용 소형 엔진(연소실 압력 200psi, 추력 350lbf) 실험을 시점으로 단계적으로 추력을 증가시키면서 단열재의 삭마 실험과 연소 불안정성을 위한 실험을 준비하고 있다. 첫걸음으로서 135$^{\circ}C$로 FOOF형의 비동류형(unlike) 충돌 제트로 구성되는 3개의 인젝터가 배열된 분사기 시험용 엔진에 관한 실험을 수행 중에 있으나 상대적으로 매우 간단한 엔진임에도 불구하고 실험적으로 내부 연소 과정을 정확히 이해하는 것도 현재로서는 여전히 용이하지 않다.다.

  • PDF

Analysis of Performance and Combustion Characteristics in KSR-III Liquid Rocket Engine with Combustion Instability Passive Control Device(Baffle) (연소 불안정 수동제어 기구(배플)를 장착한 KSR-III 액체 로켓엔진의 성능 및 연소특성 해석)

  • 문윤완;류철성;설우석;김영목;이수용
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.7 no.4
    • /
    • pp.63-72
    • /
    • 2003
  • The combustion characteristics of the KSR-III engine were investigated numerically from the viewpoint of performance and combustion field. For numerical analysis of KSR-III engine with hub-and-spoke baffle, 3-D calculation was performed about $30^{\cire}$ section and the prediction of performance was in a good agreement with hot-firing test result. As a result of baffle installed, the performance of KSR-III engine was reduced in comparison with no baffle case and local high temperature region appeared on injector plate, combustion wall and baffle wall, This calculation was used practically as basic data for designing injector plate with film cooling holes and predicting the performance of KSR-III final flight test.

Analysis for Combustion Characteristics of Hybrid Rocket Motor (하이브리드 로켓의 연소특성 해석)

  • 김후중;김용모;윤명원
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.6 no.1
    • /
    • pp.21-29
    • /
    • 2002
  • Hybrid propulsion systems provide many advantages in terms of stable operation and safety. However, classical hybrid rocket motors have lower fuel regression rate and combustion efficiency compared to solid propellant rocket motor. The recent research efforts are focused on the improvement of volume limitation and regression rate in the hybrid rocket engine. The present study has numerically investigated the combustion processes in the hybrid rocket engine. The turbulent combustion is represented by the eddy breakup model and Hiroyasu and Nagle and Strickland-Constable model are used for soot formation and soot oxidation. Radiative heat transfer is modeled by finite volume method. To reduce the uncertainties for convective heat transfer near solid fuel surface having strong blowing effect, the Low Reynolds number $\kappa-\varepsilon$ turbulent model is employed. Based on numerical results, the detailed discussion has been made for the turbulent combustion processes in the vortex hybrid rocket engine.

Effects of Combustion Instability by Swirl Intensity in Hybrid Rocket (스월 강도에 따른 하이브리드 로켓의 연소 불안정 영향)

  • Kim, Jungeun;Lee, Sulha;Kim, Ji Eun;Kim, Ji Hye;Yoo, Min Jeong;Han, Songee;Lee, Changjin
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.672-674
    • /
    • 2017
  • The addition of swirl is a common technique used in premixed combustors in order to gain stability of the combustion with the improvements in mixing characteristics. recent experimental studies have observed that the addition of swirl oxidizer flow can effectively reduce the combustion instability in hybrid rocket. Investigation was continued to analyze the effect of the swirl on the internal flow of hybrid rocket engine main combustion chamber. The flow influenced by wall blowing as a representation of fuel evaporation interacts with swirling flow. Swirl angle increases, the amplitude of the combustion pressure decrease as the unstable combustion processes. These results suggest that the oxidizer swirling flow by the swirl angle causes the change of the turbulent flow characteristics inside the combustion chamber and suppresses the factors causing the combustion instability.

  • PDF

Experimental Study of Film Cooling in Liquid Rocket Engine(III) (액체로켓엔진의 막냉각에 관한 실험적 연구(III))

  • Yu Jin;Choi Younghwan;Park Heeho;Ko Youngsung;Kim Yoo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • v.y2005m4
    • /
    • pp.203-207
    • /
    • 2005
  • An experimental study was carried out to investigate the effect of film cooling in the thrust chamber of liquid rocket using LOx and Kerosene as propellant. The heat fluxes were obtained from the measured wall temperature to the axial direction of thrust chamber for different type of coolant, the various O/F ratio, mass flow rate and the location of the film cooling injector. A thin wall combustion chamber and nozzle were used to obtain the heat flux.

  • PDF