• Title/Summary/Keyword: 로켓기반 복합사이클

Search Result 10, Processing Time 0.027 seconds

Conceptual Design Study on Rocket Based Combined Cycle Engine (로켓 기반 복합사이클 엔진의 개념설계)

  • Kang, Sang Hun;Lee, Yang Ji;Yang, Soo Seok
    • Aerospace Engineering and Technology
    • /
    • v.12 no.1
    • /
    • pp.111-119
    • /
    • 2013
  • Conceptual design of RBCC (Rocket Based Combined Cycle) engine is performed through the thermodynamic cycle analysis. The engine is designed to take off at sea level and accelerate to Mach 8 at 30 km altitude. According to the flight speed, the engine operating modes are categorized into 3 modes : Ejectorjet (~ Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). As a design result, the engine has a diameter of 1 m and a length of 6.7 m. In the prediction results, its maximum thrust is 16.5 ton. In Ramjet and Scramjet modes, design condition of the engine intake influence the engine thrust according to the flight speed.

Design Study of a Dual-Mode Ramjet Engine with Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진의 설계 연구)

  • Yang, Inyoung;Lee, Yang-Ji;Lee, Kyung-Jae
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.33-41
    • /
    • 2015
  • Scaled model of a dual-mode ramjet engine with large backward-facing step, as a component of the rocket-based combined cycle engine, was designed. Design parameters were derived for this engine with the consideration of application for the rocket-based combined cycle engine. Design methodology was established for these design parameters. The design was partially verified through numerical study. Flow characteristics of the dual-mode ramjet engine with large backward-facing step was investigated experimentally. The design methodology for relevant design parameters established in this study was verified as feasible.

Conceptual Design of Rocket Based Combined Cycle Engine (Rocket Based Combined Cycle Engine의 개념설계 연구)

  • Lee, Yang-Ji;Kang, Sang-Hun;Yang, Soo-Seok
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.581-585
    • /
    • 2009
  • In this study, conceptual design of the RBCC (Rocket Based Combined Cycle) engine was performed for the hypersonic propulsion system development. For the flight mission, RBCC engine takes off at sea level and accelerates up to Mach 8 at the altitude of 30km. By the flight speed characteristics, operating pattern of the engine is categorized into 3 modes : Ejector jet (~Mach 3), Ramjet (Mach 3~6), Scramjet (Mach 6~8). According to the engine mode characteristics, RBCC engine design and analysis was performed.

  • PDF

Ramjet Mode Combustion Test for a Dual-Mode Ramjet Engine Model with a Large Backward-Facing Step (큰 후향 계단이 있는 이중 모드 램젯 엔진 모델의 램젯 모드 연소 시험)

  • Yang, Inyoung;Lee, Kyung-jae;Lee, Yang-ji;Kim, Chun-taek
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.20 no.6
    • /
    • pp.83-90
    • /
    • 2016
  • Ramjet mode combustion test was performed for a dual-mode ramjet engine model. The engine model consists of an air intake, a combustor and a nozzle. The combustor in the model has a large backward-facing step, designed to be used as a part of a rocket-based combined cycle engine. The test was performed at the flight speed of Mach 5 and the altitude of 24 km. Strong combustion was established only when the fuel was injected from both of the bottom-side and cowl-side wall. When the total fuel stoichiometric ratio was 1.0, distributed as 0.5 on the cowl side and 0.5 on the bottom side, the flow became subsonic at some portion in the combustor by thermal choking, i.e., ramjet mode was established for this condition.

Performance Requirement Analysis and Weight Estimation of Reusable Launch Vehicle using Rocket based Air-breathing Engine (로켓기반 공기흡입추진 엔진이 적용된 재사용 발사체의 요구 성능 및 중량 분석)

  • Lee, Kyung-Jae;Yang, Inyoung;Lee, Yang-Ji;Kim, Chun-Taek;Yang, Soo-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.6
    • /
    • pp.10-18
    • /
    • 2015
  • Performance requirement analysis and weight estimation of a reusable launch vehicle with a rocket-based air-breathing engine(RBCC : Rocket Based Combined Cycle) were performed. Performance model for an RBCC engine was developed and integrated with flight trajectory model. The integrated engine-trajectory model was validated by comparing the results with those from previous research reference. Based on the new engine-trajectory model and previous research results, engine performance requirements were derived for an reusable launching vehicle with gross take-off weight of 15 tones. Dependence of the propellant amount requirement on the mode transition Mach number of the engine was also analyzed.

Multi-Ejector Design for High Altitude Simulation (고고도 환경 모사를 위한 멀티 이젝터 설계)

  • NamKoung, Hyuck-Joon;Shim, Chang-Yol;Lee, Jae-Ho;Park, Sun-Sang
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2011.11a
    • /
    • pp.705-708
    • /
    • 2011
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an design procedure on the configuration and operating condition of multi-ejector for the various high altitude simulation.

  • PDF

Design Optimization and Analysis of a RBCC Engine Flowpath Using a Kriging Model Based Genetic Algorithm (Kriging 모델기반 유전자 알고리즘을 이용한 RBCC 엔진 유로 최적설계 및 분석)

  • Chae, Sang-Hyun;Kim, Hye-Sung;Yee, Kwan-Jung;Oh, Se-Jong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.1
    • /
    • pp.51-62
    • /
    • 2017
  • A design optimization method is applied for the flow path design of RBCC engine, an important factor for the determining the propulsion performance operating at air-breathing mode. A design optimization was carried out to maximize the specific impulse of the RBCC engine by using a genetic algorithm based on the Kriging model. Results are analyzed using ANOVA and SOM. Design conditions of ramjet and scramjet mode are selected as Mach number 4 at 20 km altitude and Mach number 7 at 30 km, respectively. The optimized design presents that the specific impulse is increased by 7% and 10% on each condition than the baseline design.

Research Activities on PGC Propulsion Based on RDE, Part II: Application Studies (RDE 기반 PGC 추진기관 연구 동향, Part II: 응용연구)

  • Kim, Jung-Min;Niyasdeen, Mohammed;Han, Hyung-Seok;Oh, Sejong;Choi, Jeong-Yeol
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.6
    • /
    • pp.91-102
    • /
    • 2017
  • The early basic studies on RDE has been surveyed in the previous paper. Recently active researches are carrying on for the application to the power plant and aerospace propulsion systems. Collaboration researches are going on for the application of RDE for the gas turbine, liquid rocket and combined cycle engines in many countries. Following the previous Part 1 paper, present paper is intended to provide the comprehensive survey of recent worldwide efforts on the realistic application of RDE.

Variable Inlet Design for Hypersonic Engines with a Wide Range of Flight Mach Numbers (광대역 마하수 비행을 위한 극초음속 엔진 흡입구의 가변형상 설계)

  • Kang, Sang Hun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.19 no.3
    • /
    • pp.65-72
    • /
    • 2015
  • In present study, a supersonic inlet for dual mode ramjets or RBCC/TBCC engines with a wide range of flight Mach numbers is designed. A conical variable inlet configuration is chosen for the inlet design. Geometric relations with angles of compression cones and conical shock waves are used for the design of the inlet configuration. The performance of the supersonic inlet is confirmed by the numerical analysis. The capture area ratio is maintained around 100% from Mach 3 to 8 conditions.

Study on the Design and Operation Characteristics of Ejector System (이젝터 시스템의 설계 및 작동 특성에 관한 연구)

  • NamKoung, Hyuck-Joon;Han, Poong-Gyoo;Kim, Young-Soo
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2009.11a
    • /
    • pp.627-630
    • /
    • 2009
  • Ejector system can induce the secondary flow or affect the secondary chamber pressure by both shear stress and pressure drop which are generated in the primary jet boundary. Ejectors are widely used in a range of applications such as a turbine-based combined-cycle propulsion system and a high altitude test facility for rocket engine, pressure recovery system, desalination plant and ejector ramjet etc. The primary interest of this study is to set up an configuration and operating conditions for an ejector in the condition of sonic and subsonic. Experimental and theoretical investigation on the sonic and subsonic ejectors with a converging-diverging diffuser was carried out. Numerical simulation was adopted for an optimal geometry design and satisfying the required performance. Also, some ejectors with a various of nozzle throat and mixing chamber diameter were manufactured precisely and tested for the comparison with the calculation results.

  • PDF