• Title/Summary/Keyword: 로지스틱 회귀 분석

Search Result 1,683, Processing Time 0.032 seconds

Analysis of Korean Adolescents' Life Satisfaction based on Public Database and Data Mining Techniques: Emphasis on Decision Tree (공공 DB 데이터마이닝 기법을 활용한 국내 청소년 삶의 만족도 분석에 관한 실증연구: 의사결정나무 기법을 중심으로)

  • Jo, Hyun Jin;Ko, Geo Nu;Lee, Kun Chang
    • Journal of Digital Convergence
    • /
    • v.18 no.6
    • /
    • pp.297-309
    • /
    • 2020
  • This study focuses on the application of the data mining technique logistic regression analysis and decision tree analysis to the domestic public database called Korean Children Youth Panel Survey (KCYPS) to derive a series of important factors affecting the enhancement of life satisfaction of domestic youth. As a result, the general impact factors on life satisfaction for each grade were derived from logistic regression. Using decision tree analysis, we came to conclusions that those factors such as depression, overall grade satisfaction, household economic level, and school adaptation play crucial roles in affecting high school adolesscents' life satisfaction.

Assessment of Freeway Crash Risk using Probe Vehicle Accelerometer (프로브차량 가속도센서를 이용한 고속도로 교통사고 위험도 평가기법)

  • Park, Jae-Hong;Oh, Cheol;Kang, Kyeong-Pyo
    • International Journal of Highway Engineering
    • /
    • v.13 no.2
    • /
    • pp.49-56
    • /
    • 2011
  • Understanding various casual factors affecting the occurrence of freeway traffic crash is a backbone of deriving effective countermeasures. The first step toward understanding such factors is to identify crash risks on freeways. Unlike existing studies, this study focused on the unsafe vehicle maneuvering that can be detected by in-vehicle sensors. The recent advancement of sensor technologies allows us to gather and analyze detailed microscopic events leading to crash occurrence such as the abrupt change in acceleration. This study used an accelerometer to capture the unsafe events. A set of candidate variables representing unsafe events were derived from analyzing acceleration data obtained by the accelerometer. Then, the crash risk was modeled by the binary logistic regression technique. The probabilistic outcome of crash risk can be provided by the proposed model. An application of the methodology assessing crash risk was presented, and further research items for the successful field implementation were also discussed.

Cost Performance Evaluation Framework through Analysis of Unstructured Construction Supervision Documents using Binomial Logistic Regression (비정형 공사감리문서 정보와 이항 로지스틱 회귀분석을 이용한 건축 현장 비용성과 평가 프레임워크 개발)

  • Kim, Chang-Won;Song, Taegeun;Lee, Kiseok;Yoo, Wi Sung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.24 no.1
    • /
    • pp.121-131
    • /
    • 2024
  • This research explores the potential of leveraging unstructured data from construction supervision documents, which contain detailed inspection insights from independent third-party monitors of building construction processes. With the evolution of analytical methodologies, such unstructured data has been recognized as a valuable source of information, offering diverse insights. The study introduces a framework designed to assess cost performance by applying advanced analytical methods to the unstructured data found in final construction supervision reports. Specifically, key phrases were identified using text mining and social network analysis techniques, and these phrases were then analyzed through binomial logistic regression to assess cost performance. The study found that predictions of cost performance based on unstructured data from supervision documents achieved an accuracy rate of approximately 73%. The findings of this research are anticipated to serve as a foundational resource for analyzing various forms of unstructured data generated within the construction sector in future projects.

Thermal Comfort in Outdoor Environment by Questionnaire Survey : Using the Logistic Regresstion (로지스틱 회귀분석을 활용한 옥외공간에서의 온열쾌적감에 대한 피험자 설문 분석)

  • Lim, Jong-Yeon;Hwang, Hyo-Keun;Ryu, Min-Kyung;Song, Doo-Sam
    • 한국태양에너지학회:학술대회논문집
    • /
    • 2009.04a
    • /
    • pp.97-101
    • /
    • 2009
  • Calculating and predicting the thermal comfort in outdoor environment are difficult than in indoor environment because composition parameters are variable, interrelations among parameters are very complex and human activities in outdoor are diverse. Moreover, the thermal expectancy of subject in outdoor environment is different from that of indoor environment. The aims of this study are to examine the difference between indoor and outdoor thermal comfort range. With this in mind, field measurement for estimating outdoor thermal environment and a questionnaire survey with simultaneous measurement around the subject were conducted.

  • PDF

An Analysis on Relations between Design Errors Detected during BIM-based Design Validation and the Impacts Using Logistic Regression (로지스틱 회귀분석을 이용한 BIM 설계 검토에 의하여 발견된 설계 오류와 그 영향도간의 관계 분석)

  • Won, Jongsung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.05a
    • /
    • pp.264-265
    • /
    • 2017
  • This paper aims to analyze relations between design errors prevented by building information modeling (BIM)-based design validation and their impacts in order to identify critical consideration factors for successfully implementing BIM-based design validation in the architecture, engineering, and construction (AEC) projects. More than 800 design errors detected by BIM-based design validation in two BIM-based projects in South Korea are categorized according to its causes and work types. The relations between causes and work types of design errors and project delay, cost overrun, low quality, and rework generation that can be caused by the errors are analyzed through conducting logistic regression. Characteristics of each design error are analyzed by conducting face-to-face interviews with practitioners in the two BIM-based projects. As the results, the impacts of design error causes on predicting project delay, cost overrun, low quality, and rework generation were the highest.

  • PDF

Analysis of Predictors of Phonological Variation Realization (음운 변동 실현 오류의 예측 인자 분석)

  • An, Sung-min
    • Annual Conference on Human and Language Technology
    • /
    • 2021.10a
    • /
    • pp.498-500
    • /
    • 2021
  • 본 연구에서는 음운 변동에서 나타나는 오류가 어떤 변수에 영향을 받는지 확인하여 음운 변동 연구 및 교육의 기초 자료를 제공하고자 하는 데에 목적이다. 이를 위해 유음화 발음 데이터를 이용하여 성별, 유음화의 방향, 품사, 단어의 빈도, 단어의 음절수와 유음화의 발음 적격 유무를 변수로 설정하였다. 유음화 적격률에 영향을 줄 수 있는 독립변수를 찾기 위해 카이제곱 검정과 다중공선성의 팽창계수를 먼저 확인하였다. 이후 다중 로지스틱 회귀분석과 오즈비를 통해 유의한 예측인자를 검토하였다. 그 결과 5개의 독립 변수 중 성별과 유음화의 방향, 품사가 결과를 오류에 영향을 주는 주요한 인자가 되는 것을 확인할 수 있었다.

  • PDF

Analyzing Growth Factors of Alley Markets Using Time-Series Clustering and Logistic Regression (시계열 군집분석과 로지스틱 회귀분석을 이용한 골목상권 성장요인 연구)

  • Kang, Hyun Mo;Lee, Sang-Kyeong
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.37 no.6
    • /
    • pp.535-543
    • /
    • 2019
  • Recently, growing social interest in alley markets, which have shown rapid growth like Gyeonglidan-gil street in Seoul, has led to the need for an analysis of growth factors. This paper aims at exploring growing alley markets through time-series clustering using DTW (Dynamic Time Warping) and examining the growth factors through logistic regression. According to cluster analysis, the number of growing markets of the Northeast, the Southwest, and the Southeast were much more than the Northwest but the proportion in region of the Northwest, the Northeast, and the Southwest were much more than the Southeast. Logistic regression results show that people in 20s and 30s have a lower impact on sales than those in 50s, but have a greater impact on growth of alley market. Alley markets located in high-income areas often reached their growth limits, indicating a tendency to stagnate or decline. The proximity of a subway station effected positive on sales but negative on growth. This research is an advanced study in that the causes of sales growth of alley markets is examined, which has not been examined in the preceding study.

Factors Contributing to Winning in Ice Hockey: Analysis of 2017 Ice Hockey World Championship (2017 International Ice Hockey Federation World Championship의 승리 결정요인 분석)

  • Lee, Jusung;Kim, Hyeyoung;Kim, Chaeeun;Pathak, Prabhat;Moon, Jeheon
    • 한국체육학회지인문사회과학편
    • /
    • v.57 no.4
    • /
    • pp.387-394
    • /
    • 2018
  • The purpose of this study is to provide information regarding the strategies by identifying the main variables that determines the winning team based on the records of all games of the 2017 IIHF World Championship Top league. 64 matches were analyzed for the study. 6 variables were analyzed which included ratio of saves, shots on goal, penalties in minutes, time for power play, power play goals, and face off wins. Logistic regression analysis (LRA), multiple regression analysis (MRA), and principal component analysis (PCA) were implemented to examine the relationship between win and loss. In case of LRA, shots on goal (p<.001), face-off wins (p<.001) had significantly positive relation to winning of game whereas, penalties in minutes (p<.01) and time on power play (p<.01) had significantly negative. Using MRA, win percentage was calculated which had significant positive correlation to ratio of saves (p<.01) and face-off wins (p<.001) whereas, a significant negative with penalties in minutes (p<.001). For PCA, the winning team consisted of penalty, attack, and defense factors whereas, losing teams consisted only the attack and defense factors.

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Database Society Conference
    • /
    • 1999.06a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA: multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 둥이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation )알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉충의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적 중률을 나타내었다.

  • PDF

인공신경망을 이용한 부실기업예측모형 개발에 관한 연구

  • Jung, Yoon;Hwang, Seok-Hae
    • Proceedings of the Korea Inteligent Information System Society Conference
    • /
    • 1999.03a
    • /
    • pp.415-421
    • /
    • 1999
  • Altman의 연구(1965, 1977)나 Beaver의 연구(1986)와 같은 전통적 예측모형은 분석자의 판단에 따른 예측도가 높은 재무비율을 선정하여 다변량판별분석(MDA:multiple discriminant analysis), 로지스틱회귀분석 등과 같은 통계기법을 주로 이용해 왔으나 1980년 후반부터 인공지능 기법인 귀납적 학습방법, 인공신경망모형, 유전모형 등이 부실기업예측에 응용되기 시작했다. 최근 연구에서는 인공신경망을 활용한 변수 및 모형개발에 관한 보고가 있다. 그러나 지금까지의 연구가 주로 기업의 재무적 비율지표를 고려한 모형에 치중되었으며 정성적 자료인 비재무지표에 대한 검증과 선정이 자의적으로 이루어져온 경향이었다. 또한 너무 많은 입력변수를 사용할 경우 다중공선성 문제를 유발시킬 위험을 내포하고 있다. 본 연구에서는 부실기업예측모형을 수립하기 위하여 정량적 요인인 재무적 지표변수와 정성적 요인인 비재무적 지표변수를 모두 고려하였다. 재무적 지표변수는 상관분석 및 요인분석들을 통하여 유의한 변수들을 도출하였으며 비재무적 지표변수는 조직생태학내에서의 조직군내 조직사멸과 관련된 생태적 과정에 대한 요인들 중 조직군 내적요인으로 조직의 연령, 조직의 규모, 조직의 산업밀도를 도출하여 4개의 실험집단으로 분류하여 비재무적 지표변수를 보완하였다. 인공신경망은 다층퍼셉트론(multi-layer perceptrons)과 역방향 학습(back-propagation)알고리듬으로 입력변수와 출력변수, 그리고 하나의 은닉층을 가지는 3층 퍼셉트론(three layer perceptron)을 사용하였으며 은닉층의 노드(node)수는 3개를 사용하였다. 입력변수로 안정성, 활동성, 수익성, 성장성을 나타내는 재무적 지표변수와 조직규모, 조직연령, 그 조직이 속한 산업의 밀도를 비재무적 지표변수로 산정하여 로지스틱회귀 분석과 인공신경망 기법으로 검증하였다. 로지스틱회귀분석 결과에서는 재무적 지표변수 모형의 전체적 예측적중률이 87.50%인 반면에 재무/비재무적 지표모형은 90.18%로서 비재무적 지표변수 사용에 대한 개선의 효과가 나타났다. 표본기업들을 훈련과 시험용으로 구분하여 분석한 결과는 전체적으로 재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.

  • PDF