• 제목/요약/키워드: 로지스틱 모델

검색결과 247건 처리시간 0.023초

순수전기차 경험 고객의 우려 요인에 따른 전기차 구매 의사 영향 (The Effect of Experienced Consumers' Concerns on Willingness to Purchase Battery Electric Vehicles)

  • 정직한
    • 디지털융복합연구
    • /
    • 제19권6호
    • /
    • pp.143-162
    • /
    • 2021
  • 국내 순수전기차 시장은 초기 시장형성 단계이므로 보급확대를 위해서는 고객의 순수전기차에 대한 인식과 구매 의사에 관한 연구가 필요하다. 본 논문은 고객세분화를 위한 이론적 프레임을 전기차 사용 경험 전후에 고객의 전기차 구매 의사를 기반으로 도출하였다. 특히 순수전기차 사용 경험이 있는 서울 및 제주지역 응답자만을 대상으로 한 설문조사를 통해 고객의 구매 의사와 우려 요인들을 실증분석하였다. 로지스틱 회귀모델의 분석 결과, 경험 고객이 차내 냉난방기기에 대한 우려가 클수록 고객의 구매 의사는 감소하고, 고객의 전기차의 일일 주행거리가 길수록 구매 의사는 증가한다. 또한 순차형 프로빗 모델의 분석 결과, 경험 고객의 전기차의 주행거리, 사고 시 A/S, 경사로 주행에 대한 우려가 클수록 고객이 냉난방기기에 대해 우려가 증가했다. 본 논문은 정책입안자 및 기업에게 전기차 관련 고객세분화, 연구개발, 마케팅 전략, 지원정책 수립과 관련하여 시사점을 제공할 수 있다.

시뮬레이티드 어니일링 기반의 랜덤 포레스트를 이용한 기업부도예측 (Predicting Corporate Bankruptcy using Simulated Annealing-based Random Fores)

  • 박호연;김경재
    • 지능정보연구
    • /
    • 제24권4호
    • /
    • pp.155-170
    • /
    • 2018
  • 기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.

주택가격이 센서스에 기반한 박탈지수의 대안이 될 수 있는가?: 다수준 모델에 기반한 평가 (Can Housing Prices Be an Alternative to a Census-based Deprivation Index? An Evaluation Based on Multilevel Modeling)

  • 손철;나카야 토모키
    • 지적과 국토정보
    • /
    • 제48권2호
    • /
    • pp.197-211
    • /
    • 2018
  • 본 연구에서는 건강에 대한 공간적 연구에서 통상적으로 사용되는 센서스에 기반한 지역 박탈지수의 대안으로 지역 주택가격이 사용될 수 있는지 평가하였다. 평가를 위해 개인을 1수준으로, 수도권의 보건소 구역을 2수준으로 하는 다수준 로지스틱 모델이 추정되었다. 다수준 모델에는 개인의 점심식사후 칫솔질과 치간실 사용을 설명하기 위한 개인수준의 변수들과 보건소 구역을 대표하는 사회적 박탈지수 및 지역주택가격 수준이 포함되었다. 추정된 모델들의 설명력은 Akaike Information Criterion (AIC)와 Bayesian Information Criterion (BIC)를 이용하여 평가되었다. 모델의 추정결과는 사회적 박탈지수 및 지역 주택가격이 모두 개인의 치아관리 행동을 설명하는 데 기여하나 지역 주택가격을 사용한 모델의 AIC 및 BIC가 통상적인 센서스 기반 지역 박탈지수를 사용한 경우 보다 낮은 것을 보여 주었다. 본 연구결과는 센서스에 기반한 박탈지수를 생성하는 데 사용된 센서스 변수가 시점의 차이 등의 이유로 적절하지 않을 경우 지역 주택가격이 지역의 사회경제적 수준을 대표하기 위해 대안적으로 사용될 수 있음을 보여준다.

설명가능 AI 기반의 변수선정을 이용한 기업부실예측모형 (Corporate Bankruptcy Prediction Model using Explainable AI-based Feature Selection)

  • 문건두;김경재
    • 지능정보연구
    • /
    • 제29권2호
    • /
    • pp.241-265
    • /
    • 2023
  • 기업의 부실 예측 모델은 기업의 재무 상태를 객관적으로 모니터링하는 데 필수적인 도구 역할을 한다. 적시에 경고하고 대응 조치를 용이하게 하며 파산 위험을 완화하고 성과를 개선하기 위한 효과적인 관리 전략을 수립할 수 있도록 지원한다. 투자자와 금융 기관은 금융 손실을 최소화하기 위해 부실 예측 모델을 이용한다. 기업 부실 예측을 위한 인공지능(AI) 기술 활용에 대한 관심이 높아지면서 이 분야에 대한 광범위한 연구가 진행되고 있다. 해석 가능성과 신뢰성이 강조되며 기업 부실 예측에서 설명 가능한 AI 모델에 대한 수요가 증가하고 있다. 널리 채택된 SHAP(SHapley Additive exPlanations) 기법은 유망한 성능을 보여주었으나 변수 수에 따른 계산 비용, 처리 시간, 확장성 문제 등의 한계가 있다. 이 연구는 전체 데이터 세트를 사용하는 대신 부트스트랩 된 데이터 하위 집합에서 SHAP 값을 평균화하여 변수 수를 줄이는 새로운 변수 선택 접근법을 소개한다. 이 기술은 뛰어난 예측 성능을 유지하면서 계산 효율을 향상시키는 것을 목표로 한다. 해석 가능성이 높은 선택된 변수를 사용하여 랜덤 포레스트, XGBoost 및 C5.0 모델을 훈련하여 분류 결과를 얻고자 한다. 분류 결과는 고성능 모델 설계를 목표로 soft voting을 통해 생성된 앙상블 모델의 분류 정확성과 비교한다. 이 연구는 1,698개 한국 경공업 기업의 데이터를 활용하고 부트스트래핑을 사용하여 고유한 데이터 그룹을 생성한다. 로지스틱 회귀 분석은 각 데이터 그룹의 SHAP 값을 계산하는 데 사용되며, SHAP 값 평균은 최종 SHAP 값을 도출하기 위해 계산된다. 제안된 모델은 해석 가능성을 향상시키고 우수한 예측 성능을 달성하는 것을 목표로 한다.

로지스틱 회귀모형을 이용한 우리나라 산지면적의 공간변화 예측에 관한 연구 (Change Prediction of Future Forestland Area by Transition of Land Use Types in South Korea)

  • 곽두안;박소희
    • 한국지리정보학회지
    • /
    • 제24권4호
    • /
    • pp.99-112
    • /
    • 2021
  • 본 연구는 기존 연구에서 수행된 전국 단위의 정량적 산지면적 변화량을 공간적으로 배분하여 광역시도별 산지면적 변화를 추정함으로써 지역산림계획의 수립을 지원하기 위해 수행되었다. 토지를 산지, 농지, 도시 및 기타지로 구분하고 토지이용 형태별 변화 여부를 종속변수로, 지형요소, 이용 제한요소, 사회·경제적 요소, 개발 인프라를 독립변수로 하는 로지스틱 회귀모형을 개발하였다. 우리나라 전체를 30m×30m 격자로 분할하여 각 Cell에 해당하는 독립변수 자료를 구축하였고, 로지스틱 회귀모형을 이용하여 각 토지이용 형태가 타 유형으로 변화하는 확률을 추정하였다. 추정된 토지이용 변화확률을 기반으로 변화순위 지도를 구축하였고, 연도별 토지이용 변화량을 변화순위에 따라 순차적으로 배분함으로써 토지이용 변화의 공간적인 변화를 분석할 수 있었다. 경사도와 지자체별 개발 가능한 경사도 기준이 산지가 도시 및 기타지로 변화될 확률에 가장 큰 영향을 미쳤으며, 경사도와 개발 가능한 경사도 기준이 낮을수록, 토지가격과 인구밀도가 높을수록 산지가 도시 및 기타지로 변화될 확률이 높아졌다. 그 결과 2027년까지 수도권과 대도시의 산지가 도시 및 기타지로 변화하여 산지면적이 크게 감소하였다. 그러나 2028년 이후 2050년까지 서울, 경기, 제주를 제외한 대부분의 지역에서 산지면적이 빠르게 증가하는 것으로 예측되었는데, 이는 지방 소도시의 급격한 인구감소에 기인하는 것으로 분석되었다. 이에 중앙정부에서는 변화하는 산지면적에 대응하기 위해 산지관리 정책의 전환이 필요하고, 지자체 단위에서는 인구의 감소 정책과 그에 따른 산지를 포함한 토지의 효율적 보전 및 이용체계를 수립하는 것이 필요할 것으로 사료된다.

다항식 회귀분석을 이용한 전자저울의 비선형 특성 개선 연구 (A Study of the Nonlinear Characteristics Improvement for a Electronic Scale using Multiple Regression Analysis)

  • 채규수
    • 융합정보논문지
    • /
    • 제9권6호
    • /
    • pp.1-6
    • /
    • 2019
  • 본 연구에서는 다항식 회귀분석(Polynomial regression analysis) 방법을 이용하여 비선형 특성을 갖는 전자저울의 질량 추정 모델 개발이 이루어 졌다. 전자저울에 사용되는 로드셀의 출력 단자 전압을 기준 질량 추를 사용하여 직접 측정하였고 이 데이터를 이용하여 MS Office 엑셀의 행렬식 계산과 데이터 추세선 분석 기능을 이용하여 다항식 회귀모델을 구하였다. 5kg까지 측정 가능한 로드셀 전자저울을 사용하여 100g단위로 질량을 측정하였고 다항식 회귀분석(Multiple regression analysis) 모델을 구하였으며, 단순(1차), 2차, 3차 다항식 회귀분석에 대한 오차를 구하였다. 각 모델에 대한 회귀 방정식의 적합도 분석을 위해 결정계수(Coefficient of determination)를 제시하여 추정 질량과 측정 데이터와의 상관관계를 나타내었다. 본 연구에서 제안하는 3차 다항식 모델을 이용하여 추정 값의 표준편차가 10g, 결정계수 1.0으로 상당히 정확한 모델을 얻었다. 본 연구에 사용된 선형 회귀 분석 이론을 바탕으로 최근 인공지능 분야에서 많이 사용되고 있는 로지스틱 회귀 분석(Logistic regression analysis)을 활용하여 기상예측, 신약개발, 경제지표 분석 등의 분야에 대한 다양한 연구를 수행할 수 있을 것으로 생각된다.

데이터 기반 리튬 이온 배터리 성능 예측을 위한 학습 데이터 모델 정의 및 기계학습 분석 (Learning Data Model Definition and Machine Learning Analysis for Data-Based Li-Ion Battery Performance Prediction)

  • 김병욱;박지수;장홍준
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제12권3호
    • /
    • pp.133-140
    • /
    • 2023
  • 리튬 이온 배터리는 사용 환경과 양극재 조합 비율에 따라 배터리의 성능이 좌우된다. 고성능 리튬 이온 배터리를 개발하기 위해서는 양극재 비율을 다양하게 변화시켜가면서 배터리를 제작하고 성능을 측정해야 한다. 하지만 모든 변수 조합에 대해 배터리를 제작하고 성능을 측정하기에는 많은 시간과 비용이 소모된다. 그렇기 때문에 최근에는 데이터 기반으로 인공지능 모델을 활용하여 배터리의 성능을 예측하고자 하는 연구가 활발히 진행되고 있다. 그러나 기존 공개 배터리 데이터는 동일한 배터리로 측정 실험을 하였기 때문에 양극재 조합 비율은 고정되어 있어서 데이터 속성으로 포함되지 않았다. 본 논문에서는 양극재 소재 조합 비율에 따른 배터리의 성능을 예측할 수 있는 인공지능 모델 개발에 필요한 학습 데이터 모델을 정의한다. 우리는 리튬 이온 배터리의 성능에 영향을 미칠 수 있는 요인을 분석하여 양극재 소재별 질량과 배터리 사용 환경을 입력데이터로, 배터리의 출력과 용량을 목적 데이터로 정의하였다. 공개 배터리 데이터 중에는 양극재 비율이 포함된 데이터가 없어 양극재 비율을 모두 동일한 값으로 설정한 제한된 데이터로 다중 선형회귀 분석, 서포트 벡터 회귀분석, 다중 로지스틱 회귀 분석, LSTM 분석을 수행하였다. 실험 환경이 다른 배터리 데이터에서 각각의 배터리 데이터는 고유한 패턴을 유지하였으며, 배터리 분류 모델은 각각의 배터리를 약 2%의 오차로 분류하는 것으로 나타났다.

편평세포폐암에서 CT 영상 소견을 이용한 PD-L1 발현 예측 (Predictions of PD-L1 Expression Based on CT Imaging Features in Lung Squamous Cell Carcinoma)

  • 여성희;윤현정;김인중;김여진;이영;차윤기;박소현
    • 대한영상의학회지
    • /
    • 제85권2호
    • /
    • pp.394-408
    • /
    • 2024
  • 목적 CT 영상 소견을 이용하여 편평세포폐암에서 programmed death ligand 1 (이하 PD-L1)의 발현을 예측하는 모델을 구축해 보고자 하였다. 대상과 방법 PD-L1 발현검사 결과를 포함하고 있는 97명의 편평세포폐암 환자를 포함하였고 종양 치료 전 시행한 CT 영상 소견을 분석하였다. 전체 환자군과 40명의 진행성(≥ stage IIIB) 병기 환자군에 대하여 PD-L1 발현 예측을 위한 다중 로지스틱 회귀 분석 모델 구축을 시행하였다. 각각의 환자군에 대하여 곡선 아래 면적(areas under the receiver operating characteristic curves; 이하 AUCs)을 분석하여 예측력을 평가하였다. 결과 전체 환자군에서 '전체 유의인자 모델'(종양병기, 종양크기, 흉막결절, 폐전이)의 AUC 값은 0.652이며, '선택 유의인자 모델'(흉막결절)은 0.556이었다. 진행성 병기 환자군에서 '선택 유의인자 모델'(종양크기, 흉막결절, 폐소수전이, 간질성폐렴의 부재)의 AUC 값은 0.897이었다. 이러한 인자들 중 흉막결절과 폐소수전이는 높은 오즈비를 보였다(각각, 8.78과 16.35). 결론 본 연구에서의 모델은 편평세포폐암의 PD-L1 발현예측의 가능성을 보여주었으며 흉막결절과 폐소수전이는 PD-L1 발현을 예측하는데 중요한 CT 예측인자였다.

폭식행동 및 음식중독의 위험요인 분석: 성향점수매칭과 로지스틱 회귀모델을 이용한 분석 (Risk Factors for Binge-eating and Food Addiction : Analysis with Propensity-Score Matching and Logistic Regression)

  • 정재익;이환희;최정인;조영혜;백광열
    • 한국응용과학기술학회지
    • /
    • 제40권4호
    • /
    • pp.685-698
    • /
    • 2023
  • 본 연구는 한국인 인구집단에서 폭식행동, 음식중독을 식별하고, 해당 증상들이 비만 및 섭식행동, 정신건강, 인지적 특성과 어떠한 연관성을 보이는지 규명하고자 하였다. 이를 위하여 정상체중 및 비만체중에 해당하는 한국인 성인 257명을 대상으로 섭식문제(예: 폭식, 음식중독, 음식갈망), 정신건강(예: 우울), 인지기능(예: 충동성, 정서조절)에 관한 임상심리검사 척도를 측정하였다. 비만 여부와 성별에 따라 그룹을 나누었을 때, 비만체중 여성에서 폭식행동이 46.6%, 음식중독이 29.3%로 가장 빈도가 높았다. 성향점수 매칭 후 데이터로 독립성 검정을 수행한 결과, 폭식행동 및 음식중독이 비만체중 집단에서 정상체중 집단보다 더 많이 나타나는 것을 확인하였다. 또한 폭식행동과 음식중독 유무에 각 심리검사 척도 요인이 미치는 영향력을 파악하고자, 전진선택법을 적용한 로지스틱 회귀모델을 구축하였다. 로지스틱 회귀분석 결과, 폭식행동에는 섭식장애, 음식갈망, 상태불안, 정서조절(인지적 재해석) 및 음식중독이 주로 관여하였고, 음식중독에는 음식갈망, 폭식행동과 함께 비만과 연령의 교호작용, 교육년수가 유의하게 작용하는 것으로 나타났다. 본 연구는 한국인 성인을 대상으로 한 체계적 연구로서, 폭식행동과 음식중독이 여성 및 비만인에서 특히 더 많이 나타남을 확인하였다. 폭식행동과 음식중독에는 일부 섭식문제(예: 음식갈망)가 공통되게 관여하나, 정신건강 및 인지적 위험요인에는 차이가 있었다. 따라서 음식중독과 폭식행동은 서로 구별되는 개념으로 두고, 각각의 기질적·환경적 위험요인을 깊이 있게 탐구하는 것이 필요하다.

고온조건하에서 플라이애시를 사용한 콘크리트의 압축강도증진 해석 (Estimation of Compressive Strength of Fly Ash Concrete subjected to High Temperature)

  • 한민철
    • 한국건축시공학회지
    • /
    • 제6권3호
    • /
    • pp.99-105
    • /
    • 2006
  • In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.