국내 순수전기차 시장은 초기 시장형성 단계이므로 보급확대를 위해서는 고객의 순수전기차에 대한 인식과 구매 의사에 관한 연구가 필요하다. 본 논문은 고객세분화를 위한 이론적 프레임을 전기차 사용 경험 전후에 고객의 전기차 구매 의사를 기반으로 도출하였다. 특히 순수전기차 사용 경험이 있는 서울 및 제주지역 응답자만을 대상으로 한 설문조사를 통해 고객의 구매 의사와 우려 요인들을 실증분석하였다. 로지스틱 회귀모델의 분석 결과, 경험 고객이 차내 냉난방기기에 대한 우려가 클수록 고객의 구매 의사는 감소하고, 고객의 전기차의 일일 주행거리가 길수록 구매 의사는 증가한다. 또한 순차형 프로빗 모델의 분석 결과, 경험 고객의 전기차의 주행거리, 사고 시 A/S, 경사로 주행에 대한 우려가 클수록 고객이 냉난방기기에 대해 우려가 증가했다. 본 논문은 정책입안자 및 기업에게 전기차 관련 고객세분화, 연구개발, 마케팅 전략, 지원정책 수립과 관련하여 시사점을 제공할 수 있다.
기업의 금융 부도를 예측하는 것은 전통적으로 비즈니스 분석에서 가장 중요한 예측문제 중 하나이다. 선행연구에서 예측모델은 통계 및 기계학습 기반의 기법을 적용하거나 결합하는 방식으로 제안되었다. 본 논문에서는 잘 알려진 최적화기법 중 하나인 시뮬레이티드 어니일링에 기반한 새로운 지능형 예측모델을 제안한다. 시뮬레이티드 어니일링은 유전자알고리즘과 유사한 최적화 성능을 가진 것으로 알려져 있다. 그럼에도 불구하고, 시뮬레이티드 어니일링을 사용한 비즈니스 의사결정 문제의 예측과 분류에 관한 연구가 거의 없었기 때문에, 비즈니스 분석에서의 유용성을 확인하는 것은 의미가 있다. 본 연구에서는 시뮬레이티드 어니일링과 기계학습의 결합 모델을 사용하여 부도예측모델의 입력 특징을 선정한다. 최적화 기법과 기계학습기법을 결합하는 대표적인 유형은 특징 선택, 특징 가중치 및 사례 선택이다. 이 연구에서는 선행연구에서 가장 많이 연구된 특징 선택을 위한 결합모델을 제안한다. 제안하는 모델의 우수성을 확인하기 위하여 본 연구에서는 한국 기업의 실제 재무데이터를 이용하여 그 결과를 분석한다. 분석결과는 제안된 모델의 예측 정확도가 단순한 모델의 예측 정확성보다 우수하다는 것을 보여준다. 특히 기존의 의사결정나무, 랜덤포레스트, 인공신경망, SVM 및 로지스틱 회귀분석에 비해 분류성능이 향상되었다.
본 연구에서는 건강에 대한 공간적 연구에서 통상적으로 사용되는 센서스에 기반한 지역 박탈지수의 대안으로 지역 주택가격이 사용될 수 있는지 평가하였다. 평가를 위해 개인을 1수준으로, 수도권의 보건소 구역을 2수준으로 하는 다수준 로지스틱 모델이 추정되었다. 다수준 모델에는 개인의 점심식사후 칫솔질과 치간실 사용을 설명하기 위한 개인수준의 변수들과 보건소 구역을 대표하는 사회적 박탈지수 및 지역주택가격 수준이 포함되었다. 추정된 모델들의 설명력은 Akaike Information Criterion (AIC)와 Bayesian Information Criterion (BIC)를 이용하여 평가되었다. 모델의 추정결과는 사회적 박탈지수 및 지역 주택가격이 모두 개인의 치아관리 행동을 설명하는 데 기여하나 지역 주택가격을 사용한 모델의 AIC 및 BIC가 통상적인 센서스 기반 지역 박탈지수를 사용한 경우 보다 낮은 것을 보여 주었다. 본 연구결과는 센서스에 기반한 박탈지수를 생성하는 데 사용된 센서스 변수가 시점의 차이 등의 이유로 적절하지 않을 경우 지역 주택가격이 지역의 사회경제적 수준을 대표하기 위해 대안적으로 사용될 수 있음을 보여준다.
기업의 부실 예측 모델은 기업의 재무 상태를 객관적으로 모니터링하는 데 필수적인 도구 역할을 한다. 적시에 경고하고 대응 조치를 용이하게 하며 파산 위험을 완화하고 성과를 개선하기 위한 효과적인 관리 전략을 수립할 수 있도록 지원한다. 투자자와 금융 기관은 금융 손실을 최소화하기 위해 부실 예측 모델을 이용한다. 기업 부실 예측을 위한 인공지능(AI) 기술 활용에 대한 관심이 높아지면서 이 분야에 대한 광범위한 연구가 진행되고 있다. 해석 가능성과 신뢰성이 강조되며 기업 부실 예측에서 설명 가능한 AI 모델에 대한 수요가 증가하고 있다. 널리 채택된 SHAP(SHapley Additive exPlanations) 기법은 유망한 성능을 보여주었으나 변수 수에 따른 계산 비용, 처리 시간, 확장성 문제 등의 한계가 있다. 이 연구는 전체 데이터 세트를 사용하는 대신 부트스트랩 된 데이터 하위 집합에서 SHAP 값을 평균화하여 변수 수를 줄이는 새로운 변수 선택 접근법을 소개한다. 이 기술은 뛰어난 예측 성능을 유지하면서 계산 효율을 향상시키는 것을 목표로 한다. 해석 가능성이 높은 선택된 변수를 사용하여 랜덤 포레스트, XGBoost 및 C5.0 모델을 훈련하여 분류 결과를 얻고자 한다. 분류 결과는 고성능 모델 설계를 목표로 soft voting을 통해 생성된 앙상블 모델의 분류 정확성과 비교한다. 이 연구는 1,698개 한국 경공업 기업의 데이터를 활용하고 부트스트래핑을 사용하여 고유한 데이터 그룹을 생성한다. 로지스틱 회귀 분석은 각 데이터 그룹의 SHAP 값을 계산하는 데 사용되며, SHAP 값 평균은 최종 SHAP 값을 도출하기 위해 계산된다. 제안된 모델은 해석 가능성을 향상시키고 우수한 예측 성능을 달성하는 것을 목표로 한다.
본 연구는 기존 연구에서 수행된 전국 단위의 정량적 산지면적 변화량을 공간적으로 배분하여 광역시도별 산지면적 변화를 추정함으로써 지역산림계획의 수립을 지원하기 위해 수행되었다. 토지를 산지, 농지, 도시 및 기타지로 구분하고 토지이용 형태별 변화 여부를 종속변수로, 지형요소, 이용 제한요소, 사회·경제적 요소, 개발 인프라를 독립변수로 하는 로지스틱 회귀모형을 개발하였다. 우리나라 전체를 30m×30m 격자로 분할하여 각 Cell에 해당하는 독립변수 자료를 구축하였고, 로지스틱 회귀모형을 이용하여 각 토지이용 형태가 타 유형으로 변화하는 확률을 추정하였다. 추정된 토지이용 변화확률을 기반으로 변화순위 지도를 구축하였고, 연도별 토지이용 변화량을 변화순위에 따라 순차적으로 배분함으로써 토지이용 변화의 공간적인 변화를 분석할 수 있었다. 경사도와 지자체별 개발 가능한 경사도 기준이 산지가 도시 및 기타지로 변화될 확률에 가장 큰 영향을 미쳤으며, 경사도와 개발 가능한 경사도 기준이 낮을수록, 토지가격과 인구밀도가 높을수록 산지가 도시 및 기타지로 변화될 확률이 높아졌다. 그 결과 2027년까지 수도권과 대도시의 산지가 도시 및 기타지로 변화하여 산지면적이 크게 감소하였다. 그러나 2028년 이후 2050년까지 서울, 경기, 제주를 제외한 대부분의 지역에서 산지면적이 빠르게 증가하는 것으로 예측되었는데, 이는 지방 소도시의 급격한 인구감소에 기인하는 것으로 분석되었다. 이에 중앙정부에서는 변화하는 산지면적에 대응하기 위해 산지관리 정책의 전환이 필요하고, 지자체 단위에서는 인구의 감소 정책과 그에 따른 산지를 포함한 토지의 효율적 보전 및 이용체계를 수립하는 것이 필요할 것으로 사료된다.
본 연구에서는 다항식 회귀분석(Polynomial regression analysis) 방법을 이용하여 비선형 특성을 갖는 전자저울의 질량 추정 모델 개발이 이루어 졌다. 전자저울에 사용되는 로드셀의 출력 단자 전압을 기준 질량 추를 사용하여 직접 측정하였고 이 데이터를 이용하여 MS Office 엑셀의 행렬식 계산과 데이터 추세선 분석 기능을 이용하여 다항식 회귀모델을 구하였다. 5kg까지 측정 가능한 로드셀 전자저울을 사용하여 100g단위로 질량을 측정하였고 다항식 회귀분석(Multiple regression analysis) 모델을 구하였으며, 단순(1차), 2차, 3차 다항식 회귀분석에 대한 오차를 구하였다. 각 모델에 대한 회귀 방정식의 적합도 분석을 위해 결정계수(Coefficient of determination)를 제시하여 추정 질량과 측정 데이터와의 상관관계를 나타내었다. 본 연구에서 제안하는 3차 다항식 모델을 이용하여 추정 값의 표준편차가 10g, 결정계수 1.0으로 상당히 정확한 모델을 얻었다. 본 연구에 사용된 선형 회귀 분석 이론을 바탕으로 최근 인공지능 분야에서 많이 사용되고 있는 로지스틱 회귀 분석(Logistic regression analysis)을 활용하여 기상예측, 신약개발, 경제지표 분석 등의 분야에 대한 다양한 연구를 수행할 수 있을 것으로 생각된다.
리튬 이온 배터리는 사용 환경과 양극재 조합 비율에 따라 배터리의 성능이 좌우된다. 고성능 리튬 이온 배터리를 개발하기 위해서는 양극재 비율을 다양하게 변화시켜가면서 배터리를 제작하고 성능을 측정해야 한다. 하지만 모든 변수 조합에 대해 배터리를 제작하고 성능을 측정하기에는 많은 시간과 비용이 소모된다. 그렇기 때문에 최근에는 데이터 기반으로 인공지능 모델을 활용하여 배터리의 성능을 예측하고자 하는 연구가 활발히 진행되고 있다. 그러나 기존 공개 배터리 데이터는 동일한 배터리로 측정 실험을 하였기 때문에 양극재 조합 비율은 고정되어 있어서 데이터 속성으로 포함되지 않았다. 본 논문에서는 양극재 소재 조합 비율에 따른 배터리의 성능을 예측할 수 있는 인공지능 모델 개발에 필요한 학습 데이터 모델을 정의한다. 우리는 리튬 이온 배터리의 성능에 영향을 미칠 수 있는 요인을 분석하여 양극재 소재별 질량과 배터리 사용 환경을 입력데이터로, 배터리의 출력과 용량을 목적 데이터로 정의하였다. 공개 배터리 데이터 중에는 양극재 비율이 포함된 데이터가 없어 양극재 비율을 모두 동일한 값으로 설정한 제한된 데이터로 다중 선형회귀 분석, 서포트 벡터 회귀분석, 다중 로지스틱 회귀 분석, LSTM 분석을 수행하였다. 실험 환경이 다른 배터리 데이터에서 각각의 배터리 데이터는 고유한 패턴을 유지하였으며, 배터리 분류 모델은 각각의 배터리를 약 2%의 오차로 분류하는 것으로 나타났다.
목적 CT 영상 소견을 이용하여 편평세포폐암에서 programmed death ligand 1 (이하 PD-L1)의 발현을 예측하는 모델을 구축해 보고자 하였다. 대상과 방법 PD-L1 발현검사 결과를 포함하고 있는 97명의 편평세포폐암 환자를 포함하였고 종양 치료 전 시행한 CT 영상 소견을 분석하였다. 전체 환자군과 40명의 진행성(≥ stage IIIB) 병기 환자군에 대하여 PD-L1 발현 예측을 위한 다중 로지스틱 회귀 분석 모델 구축을 시행하였다. 각각의 환자군에 대하여 곡선 아래 면적(areas under the receiver operating characteristic curves; 이하 AUCs)을 분석하여 예측력을 평가하였다. 결과 전체 환자군에서 '전체 유의인자 모델'(종양병기, 종양크기, 흉막결절, 폐전이)의 AUC 값은 0.652이며, '선택 유의인자 모델'(흉막결절)은 0.556이었다. 진행성 병기 환자군에서 '선택 유의인자 모델'(종양크기, 흉막결절, 폐소수전이, 간질성폐렴의 부재)의 AUC 값은 0.897이었다. 이러한 인자들 중 흉막결절과 폐소수전이는 높은 오즈비를 보였다(각각, 8.78과 16.35). 결론 본 연구에서의 모델은 편평세포폐암의 PD-L1 발현예측의 가능성을 보여주었으며 흉막결절과 폐소수전이는 PD-L1 발현을 예측하는데 중요한 CT 예측인자였다.
본 연구는 한국인 인구집단에서 폭식행동, 음식중독을 식별하고, 해당 증상들이 비만 및 섭식행동, 정신건강, 인지적 특성과 어떠한 연관성을 보이는지 규명하고자 하였다. 이를 위하여 정상체중 및 비만체중에 해당하는 한국인 성인 257명을 대상으로 섭식문제(예: 폭식, 음식중독, 음식갈망), 정신건강(예: 우울), 인지기능(예: 충동성, 정서조절)에 관한 임상심리검사 척도를 측정하였다. 비만 여부와 성별에 따라 그룹을 나누었을 때, 비만체중 여성에서 폭식행동이 46.6%, 음식중독이 29.3%로 가장 빈도가 높았다. 성향점수 매칭 후 데이터로 독립성 검정을 수행한 결과, 폭식행동 및 음식중독이 비만체중 집단에서 정상체중 집단보다 더 많이 나타나는 것을 확인하였다. 또한 폭식행동과 음식중독 유무에 각 심리검사 척도 요인이 미치는 영향력을 파악하고자, 전진선택법을 적용한 로지스틱 회귀모델을 구축하였다. 로지스틱 회귀분석 결과, 폭식행동에는 섭식장애, 음식갈망, 상태불안, 정서조절(인지적 재해석) 및 음식중독이 주로 관여하였고, 음식중독에는 음식갈망, 폭식행동과 함께 비만과 연령의 교호작용, 교육년수가 유의하게 작용하는 것으로 나타났다. 본 연구는 한국인 성인을 대상으로 한 체계적 연구로서, 폭식행동과 음식중독이 여성 및 비만인에서 특히 더 많이 나타남을 확인하였다. 폭식행동과 음식중독에는 일부 섭식문제(예: 음식갈망)가 공통되게 관여하나, 정신건강 및 인지적 위험요인에는 차이가 있었다. 따라서 음식중독과 폭식행동은 서로 구별되는 개념으로 두고, 각각의 기질적·환경적 위험요인을 깊이 있게 탐구하는 것이 필요하다.
In this paper, the estimation of compressive strength of concrete incorporating fly ash subjected to high temperature is discussed. Ordinary Portland cement and fly ash cement(30% of fly ash) were used, respectively. Water to binder ration ranging from 30% to 60% and curing temperature ranging from $20^{\circ}C{\sim}65^{\circ}C$ were also adopted for the experimental parameters. According to results, at the high temperature, FAC had higher strength development at early age than OPC concrete and it kept its high strength development at later age due to accelerated pozzolanic reaction subjected to high temperature. For strength estimation, Logistic model based on maturity equation and Carino model based on equivalent age were applied to verify the availability of estimation model. It shows that fair agreements between calculated values and measured values were obtained evaluating compressive strength with logistic curve. The application of logistic model at high temperature had remarkable deviations in the same maturity. Whereas, the application of Carino model showed good agreements between calculated values and measured ones regardless of type of cement and W/B. However, some correction factors should be considered to enhance the accuracy of strength estimation of concrete.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.