본 연구에서는 한농대에 재학 중인 3학년 학생을 대상으로 대학생활 선호도 및 졸업 후 영농의지를 파악하기 위하여 설문조사를 실시하였다. 연구 분석에는 구조화되지 않은 데이터의 분석 기법으로 오피니언 마이닝과 텍스트 마이닝 기법을 이용하였으며, 텍스트 마이닝의 결과는 워드 클라우드로 시각화하여 정보를 추출하였다. 또한 감성분석 결과를 이용하여 졸업 후 농사일을 하려는 학생들의 영농의지에 대한 통계적 분석을 하였다. 대학생활 호감도 조사는 대학 이미지, 자기 역량, 기숙사, 교육시스템, 미래 비전 등 5개 분야에 전체 10개 항목에 대하여 이루어졌다. 감성 분석을 위한 긍·부정 사전은 수집된 응답지에서 긍정과 부정의 감정을 분류하여 긍정어 사전과 부정어 사전을 각각 만들어 분석에 이용하였다. 분석 결과 10개 평가항목 가운데 대학 지원 당시의 '대학 이미지', 10년 후의 '자기 모습' 항목은 70% 이상, '자기 역량'과 '현재의 한농대' 항목은 60% 이상의 긍정적 감정을 나타냈다. 반면 '대학 기숙사' '교육과정' '장기현장실습' '한국 농업의 미래' 항목에 대해서는 긍정적 감성보다 부정적 감성이 높게 나타났다. 성별, 영농기반, 입학 동기에 따른 영농의지 차이의 교차 분석에서는 성별, 입학 동기에 따른 영농의지는 통계적으로 유의미한 결과가 나타났으나, 영농기반에서는 유의미하지 않은 결과가 나타났다. 또한 영농의지에 대한 이항 로지스틱 회귀분석에서는 통계적으로 유의미한 변수는 '입학 동기'로 파악되었으며, 본인의 의지로 입학한 학생일수록 영농의지가 형성될 확률이 높게 나타났다.
아이돌이 주도하는 한국의 대중음악은 이제 전세계적인 팬덤을 확보하였다. 이로 인해, 아티스트를 넘어서 한국의 경제 상황에도 커다란 영향력을 행사하고 있다. 즉, 아이돌 그룹 하나가 크게 히트를 치면 조 단위의 외화를 벌어들일 수 있게 된 것이다. 따라서 아이돌 그룹을 성공시키고 이를 유지시키는 것이 상당히 중요한 과제로 떠올랐다. 본 연구에서는 소속사가 손익분기점으로 삼는 데뷔 후 3년차 및 평균적인 재계약 직후 시점인 8년차 아이돌의 생존여부를 인공신경망, 의사결정나무, 랜덤 포레스트를 활용하여 예측해보고자 한다. 그리고 생존에 있어 무엇이 중요한 요인인지를 나무 모델의 특성중요도 및 로지스틱 회귀분석을 활용하여 설명하였다. 그 결과, 데뷔 시점의 경쟁자 수, 최초 그룹의 구성원 수, 다루는 장르의 수 등의 요인이 유의하다는 결론을 얻을 수 있었다. 이를 통해, 최종적으로 아이돌 그룹을 보다 효율적으로 기획, 관리함으로써 산업 경쟁력을 증진할 수 있을 것으로 기대한다.
본 연구에서는 고속도로에서 GPS(Global Positioning System)수신기를 장착한 프로브차량을 이용하여 수집한 속도자료를 이용하여 사고 위험구간을 추출하는 방법론을 제시하였다. 위험구간 추출을 사고발생 유 무를 판단하는 분류문제(Classification)로 정형화하고 베이지안 신경망을 적용하였다. 개별차량의 속도자료를 이용하여 다양한 잠재적 독립변수를 설정하고 이항 로지스틱 회귀분석을 이용하여 통계적으로 유의미한 변수만을 추출하여 베이지안 신경망의 입력자료로 사용하였다. 제안된 방법론의 성능 평가를 위해 사고 발생 경험이 있는 위험구간을 정확히 추출하는 분류정확도를 효과척도로 활용하였다. 본 연구에서 제안한 방법론의 타당성을 60%의 분류정확도를 통해 확인할 수 있었다. 고속도로 신설노선의 교통안전성을 평가하고 사고예방을 위한 대응책 개발 및 적용에 본 연구의 결과가 효과적으로 활용될 것으로 기대된다.
효과적인 가변제한속도(Variable Speed Limit: VSL)는 교통사고를 예방하고 교통정체를 완화시키는데 기여하는 중요한 교통류 제어방안이다. 본 연구에서는 교통사고 예방을 목적으로 가변제한속도를 적용하는 방법론을 제시하였다. 가변제한속도를 적용하는 조건을 두 가지로 분류하였는데, 사고위험도 예측모형에 따른 제한속도 변화와 도로환경조건의 변화에 따른 제한속도 조정 방안을 제안하였다. 예측된 사고위험도에 따른 가변제한속도의 적용은 검지기에서 추출되는 교통량, 속도, 점유율자료와 교통사고자료로 이항로지스틱회귀분석 기법을 사용하여 구축된 사고위험도 예측모형을 사용하였다. 한편, 도로환경조건에 따른 가변제한속도 적용에서는 안개, 폭우, 폭설로 인한 시거제약 상황과 결빙, 비, 눈으로 인한 노면마찰력감소상황 시 최소정지거리 계산을 통해 각 상황에 적용되어야 하는 제한속도를 제시하였다. 이를 바탕으로 통합도로환경조건 모니터링 시스템 하에서 사고위험도와 도로환경조건을 관측하고 제한속도를 변화시키는 가변제한속도 시스템 알고리즘을 제시하였으며, 제안된 알고리즘의 현장 적용 시 고려되어야 할 기술적 이슈를 논의하였다.
본 연구에서는 한국 및 미국의 퇴원환자 자료를 이용하여 한국 및 미국의 중증도 보정 사망 모형을 개발하고 개발된 중증도 보정 사망모형에 따라 중증도 보정 사망률 지표를 산출 및 비교한 다음 이를 통해 국내 의료기관 사망률 관리 방안을 제시하고자 하였다. 한국 및 미국 의료기관의 중증도 보정 사망 모형은 데이터마이닝기법인 다중 로지스틱회귀분석 기법, 의사결정나무분석 기법을 이용하여 개발하였다. 개발된 의료기관의 중증도 보정 사망모형에 따라 한국 및 미국 의료기관의 중증도 보정 사망률을 산출한 결과 한국은 매년 증가하고 있는 반면 미국은 매년 감소하고 있는 것으로 나타나 한국과 미국간에 차이가 있었다. 의료기관의 병상규모별 중증도 보정 사망률의 변이 또한 한국이 미국보다 높았다. 국내 의료기관의 사망률 관리를 위해서는 의료기관 자체내에서 사망환자 관리가 가능한 대형 의료기관들의 경우 의료기관 중증도 보정 사망률 평가 결과 공개를 통해 지속적으로 사망률 관리를 유도하고, 의료기관 자체내에서 사망률 관리가 힘든 중소병원들은 국가 차원에서 파악한 국내 의료기관 사망환자 관리의 문제점 및 이를 개선할 수 있는 개선방안을 토대로 사망률 관리 컨설팅을 시행하는 등 의료기관 사망환자 관리 사업을 진행하여야 한다.
부도는 막대한 사회적, 경제적 손실을 야기할 수 있으므로, 미리 부도여부를 정확하게 예측하여 선제 대응하는 것은 경영분야에서 대단히 중요한 의사결정문제 중 하나이다. 이에 지능정보시스템 분야에서도 그간 기업의 재무 데이터에 기반해 부도예측을 개선하기 위한 노력을 기울여왔는데, 안타깝게도 기존의 연구들은 대부분 분류모형의 성능 개선을 통해 예측 정확도를 개선하는 것에만 주로 초점을 맞추어 다른 요소들을 충분히 고려하지 못했다는 한계가 있다. 이러한 배경에서 본 연구는 부도예측 모형의 정확도를 개선하기 위한 방편으로 새로운 데이터 전처리 방법, 그 중에서도 효과적인 표본추출 방법을 제안하고자 한다. 일반적으로 부도예측을 위해 사용되는 데이터들은 극심한 데이터 불균형 문제에 노출되어 있는데, 본 연구에서는 k-reverse nearest neighbor(k-RNN)와 one-class support vector machine(OCSVM) 방법을 결합한 하이브리드 언더샘플링(hybrid under-sampling) 접근법을 통해 이같은 데이터 불균형 문제를 해결하고자 하였다. 본 연구에서 제안한 접근법에서 k-RNN은 이상치를 효과적으로 제거할 수 있으며, OCSVM은 다수를 구성하는 등급의 데이터로부터 정보량이 풍부한 표본만 효과적으로 선택할 수 있는 수단으로 활용될 수 있다. 제안된 기법의 성능을 검증하기 위해, 본 연구에서는 국내 한 은행의 비외감기업 부도예측모형 구축에 제안 기법을 적용해 본 뒤, 일반적으로 많이 사용되는 랜덤샘플링(random sampling)과 제안 기법의 성능을 비교해 보았다. 그 결과, 로지스틱 회귀분석, 판별분석, 의사결정나무, SVM 등 대다수의 분류모형에 있어 분류 정확도가 개선됨을 확인할 수 있었으며, 모든 분류모형에 있어 부정 오류, 즉 부실기업을 정상으로 예측하는 오류율이 크게 감소함을 확인할 수 있었다.
무선 인터넷을 이용하는 사용자는 정보의 양의 따른 시간적 통신비용의 증가 문제로 개인화 에이전트가 사용자의 관심에 따라 서비스를 제공하는 기능과 맞춤화된 정보를 제공하는 기능, 지식 기반 방식으로 정보를 예측하는 기능을 가지기를 바라고 있다. 본 논문에서는 이와 같이 무선 인터넷을 사용하는 사용자를 위한 PDA 개인화 에이전트 시스템을 구축하고자 한다. PDA 개인화 에이전트 시스템 구축을 위해 프로파일 기반의 에이전트 엔진과 사용자 프로파일을 이용한 지식기반 방식을 사용한다. 사용자가 웹페이지에서 행하는 행위들을 모니터링하여 사용자가 관심 가지는 문서를 파악하고 정보 검색을 통해 얻어진 문서를 분석하여 사용자 각각의 관심 문서로 나누어 서비스하게 된다. 모니터링 되어진 문서를 효과적으로 분석하기 위해 unsupervised clustering 기계학습 방식인 Cobweb을 이용한다. unsupervised 기계 학습은 conceptual 방식을 이용하여 검색되어진 정보를 사용자의 관심 분야별로 clustering한다. 클러스터링을 통해 얻어진 결과를 다시 기계학습을 통해 사용자 관심문서에 대한 프로파일을 생성하게 된다. 이렇게 만들어진 프로파일을 룰(Rule)로 만들어 이를 기반으로 사용자에게 서비스하게 된다. 이러한 룰은 사용자의 모니터링 결과로 얻어지기 때문에 주기적으로 업데이트하게 된다. 제안하는 시스템은 인터넷신문이나 웹진 등에서 사용자들에게 뉴스를 전달하기 위한 목적으로 생성하는 뉴스문서를 특정 대상으로 선정하였고 사용자 정보를 이용한 검색을 실시하고 결과로 얻어진 정보를 정보 분류를 통해 PDA나 휴대폰을 통해 사용자에게 제공한다. 상품을 검색하기 위한 검색노력을 줄이고, 검색된 대안들로부터 구매자와 시스템이 웹상에서 서로 상호작용(interactivity) 하여 해를 찾고, 제약조건과 규칙들에 의해 적합한 해를 찾아가는 방법을 제시한다. 본 논문은 구성기반 예로서 컴퓨터 부품조립을 사용해서 Template-based reasoning 예를 보인다 본 방법론은 검색노력을 줄이고, 검색에 있어 Feasibility와 Admissibility를 보장한다.매김할 수 있는 중요한 계기가 될 것이다.재무/비재무적 지표를 고려한 인공신경망기법의 예측적중률이 높은 것으로 나타났다. 즉, 로지스틱회귀 분석의 재무적 지표모형은 훈련, 시험용이 84.45%, 85.10%인 반면, 재무/비재무적 지표모형은 84.45%, 85.08%로서 거의 동일한 예측적중률을 가졌으나 인공신경망기법 분석에서는 재무적 지표모형이 92.23%, 85.10%인 반면, 재무/비재무적 지표모형에서는 91.12%, 88.06%로서 향상된 예측적중률을 나타내었다.ting LMS according to increasing the step-size parameter $\mu$ in the experimentally computed. learning curve. Also we find that convergence speed of proposed algorithm is increased by (B+1) time proportional to B which B is the number of recycled data buffer without complexity of compu
Brain Perfusion SPECT (Diamox)는 아세타졸아미드를 사용하여 혈관예비능을 평가하는데 아주 유용한 검사이다. 1day-protocol method는 영상의 질이 뛰어나고 한 번에 두 가지 영상을 얻을 수 있는 이점이 있어, 검사실과 내원 환자에 모두 유리하다. 하지만 긴 검사시간으로 인해 다른 검사보다 재검사율이 높은 문제점을 가지고 있다. 이에 시행한 환자의 성별, 나이, 상병, 머리고정기구 사용 여부에 따른 재검사율을 파악하여 검사의 최적화를 도모하고자 하였다. 2010년 3월부터 2011년 2월까지 시행한 환자 676명(남:359명, 여:317명)을 대상으로 하였으며, 머리의 움직임을 유발하는 요인을 성별, 연령, 상병의 종류, 머리고정기구 적용여부로 나누어 검사결과에 기여하는 여부와 정도를, 카이제곱 검정기법과 이분형 로지스틱 회귀분석기법을 사용하여 검증하였다. 남성이 3.4%, 여성이 1.5%로 남성이 여성보다 실패율이 높았으며, 70대가 1.0%로 가장 높은 실패율을 보였다. 카이제곱 검정결과 p-value는 0.001미만으로 통계적으로 유의한 차이가 있는 것으로 나타났다. 이분형 로지스틱 회귀분석결과에서는 성별, 상병(CI), 머리고정기구 사용이 통계적으로 유의한 수준에서 영향을 끼치는 요인으로 평가 되었다. 각각의 Wald value는 3.3, 3.7, 9.3으로 머리고정기구의 사용이 가장 큰 영향을 주는 것으로 나타났다. 연구결과를 통해 연령을 제외한 성별과 상병 그리고 머리고정기구 사용이 검사수행결과에 통계적으로 유의한 수준의 영향력을 가지는 요인들임을 알게 되었으며. 그 중 머리고정기구 사용은 검사수행결과에 끼치는 영향이 가장 큰 요인임을 알 수 있었다. 검사의 시행에 있어서 머리고정기구를 필수적으로 사용한다면 Brain Perfusion SPECT(Diamox)검사의 재검사율을 크게 낮출 수 있을 것으로 기대된다.
본 연구는 기존 동반질환을 이용한 중증도 보정 방법의 제한점을 보완하기 위해 급성심근경색증 환자의 맞춤형 중증도 보정방법을 개발하고, 이의 타당성을 평가하기 위해 수행되었다. 이를 위하여 질병관리본부에서 2006년부터 2015년까지 10년간 수집한 퇴원손상심층조사 자료 중 주진단이 급성심근경색증인 한국표준질병사인분류(KCD-7) 코드 I20.0~I20.9의 대상자를 추출하였고, 동반질환 중증도 보정 도구로는 기존 활용되고 있는 CCI(Charlson comorbidity index), ECI(Elixhauser comorbidity index)와 새로이 제안하는 CCS(Clinical Classification Software)를 사용하였다. 이에 대한 중증도 보정 사망예측모형 개발을 위하여 머신러닝 기법인 로지스틱 회귀분석, 의사결정나무, 신경망, 서포트 벡터 머신기법을 활용하여 비교하였고 각각의 AUC(Area Under Curve)를 이용하여 개발된 모형을 평가하였다. 이를 평가한 결과 중증도 보정도구로는 CCS 가 가장 우수한 것으로 나타났으며, 머신러닝 기법 중에서는 서포트 벡터 머신을 이용한 모형의 예측력이 가장 우수한 것으로 확인되었다. 이에 향후 의료서비스 결과평가 등 중증도 보정을 위한 연구에서는 본 연구에서 제시한 맞춤형 중증도 보정방법과 머신러닝 기법을 활용하도록 하는 것을 제안한다.
본 연구는 복합만성질환 입원환자를 대상으로 중증도 보정 사망 예측모형을 개발하고, 중증도 보정 사망비의 변이 요인을 규명하여 변이를 줄일 수 있는 방안을 제시하고자 하였다. 이를 위해 퇴원손상심층조사 자료 2008년부터 2010년까지 자료를 수집하고 주진단이 만성질환이면서 주진단을 포함하여 2개 이상의 만성질환을 보유한 30세 이상의 복합만성질환 입원환자 110,700건을 최종 연구대상으로 선정하였다. 예측 모형 개발 시 데이터마이닝 기법(로지스틱회귀분석, 의사결정나무, 신경망 기법)을 적용하였다. 본 연구에서는 Elixhauser comorbidity index 동반상병 보정지수를 이용하여 의사결정나무분석으로 복합만성질환 입원환자의 중증도 보정 사망 예측모형을 개발하였다. 복합만성질환 입원환자의 의료기관 중증도 보정 사망비(HSMR)를 산출 한 결과 진료비 지불방법별, 병상규모별, 의료기관소재지별로 통계적으로 유의한 차이가 있는 것으로 나타났다. 상기 분석결과를 바탕으로 국가적 차원에서 복합만성질환 입원환자의 사망비를 효율적으로 관리하여 의료의 질 향상과 증가하는 의료비 부담 감소를 위해 지속적인 관심과 노력을 기울여야 할 것이다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.