• Title/Summary/Keyword: 로봇 Following

Search Result 457, Processing Time 0.027 seconds

The Motion Control of Concrete Floor Finishing Robot (미장로봇의 운동제어)

  • Shin, Dong-Hun;Han, Doo Ho
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.8
    • /
    • pp.38-45
    • /
    • 1999
  • The 2-trowel type concrete floor finishing robot can move in any direction by adjusting the posture or trowels without any wheels. Since the quality of the smoothed and polished concrete floor is determined by plastering speed, we need to control the velocity of the robot. However, we cannot use the typical motion control method because it is very difficult to measure the velocity of the robot, in contrast to the mobile robots with wheels. To overcome this difficulty, the following are studied in this paper: we found that the robot dynamics has the disturbance depending on its translational speed, and showed that there exists the saturated velocity of the robot which is set by the posture of the trowels, and obtained the relationship between the saturated velocity and the posture in the translation. The result enables us to control the motion of the robot only by adjusting the posture of trowels without measuring the velocity of the robot. Currently, we built the troweling robot and are experimenting its performance with the proposed motion control method.

  • PDF

LQ control by linear model of Inverted Pendulum Robot for Robust Human Tracking (도립형 로봇의 강건한 인간추적을 위한 선형화 모델기반 LQ제어)

  • Jin, Taeseok
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.23 no.1
    • /
    • pp.49-55
    • /
    • 2020
  • This paper presents the system modeling, analysis, and controller design and implementation with a inverted pendulum system in order to test Linear Quadratic control based robust algorithm for inverted pendulum robot. The balancing of an inverted pendulum robot by moving pendulum robot like as 'segway' along a horizontal track is a classic problem in the area of control. This paper will describe two methods to swing a pendulum attached to a cart from an initial downwards position to an upright position and maintain that state. The results of real experiment show that the proposed control system has superior performance for following a reference command at certain initial conditions.

얀센 메커니즘 기반의 라인트레이싱 로봇 설계

  • Gang, Nam-Gyu;Lee, Su-Hong
    • Proceeding of EDISON Challenge
    • /
    • 2017.03a
    • /
    • pp.528-532
    • /
    • 2017
  • The Theo Jansen mechanism using 1 degree of freedom is special system of walking robot. The trajectory made by the point of ground position is similar to other walking robot using many degrees of freedom. Because of diversity of design parameter of the Jansen mechanism, it makes a lot of trajectory and takes possibilities of optimization. However this research doesn't focus on the optimization of trajectory, but it focused on comprehensive design of the robot using well-known trajectory and line tracer logic to go fast and accurate along the line. The logic to follow a line has many kinds of possibility of algorithm. To eliminate uncertainty about recognizing a line, I divide the case of line following situation and make optimized logic.

  • PDF

Accurate Vehicle Positioning on a Numerical Map

  • Laneurit Jean;Chapuis Roland;Chausse Fr d ric
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.1
    • /
    • pp.15-31
    • /
    • 2005
  • Nowadays, the road safety is an important research field. One of the principal research topics in this field is the vehicle localization in the road network. This article presents an approach of multi sensor fusion able to locate a vehicle with a decimeter precision. The different informations used in this method come from the following sensors: a low cost GPS, a numeric camera, an odometer and a steer angle sensor. Taking into account a complete model of errors on GPS data (bias on position and nonwhite errors) as well as the data provided by an original approach coupling a vision algorithm with a precise numerical map allow us to get this precision.

Design of Adaptive Fuzzy IMM Algorithm for Tracking the Maneuvering Target with Time-varying Measurement Noise

  • Kim, Hyun-Sik;Kim, In-Ho
    • International Journal of Control, Automation, and Systems
    • /
    • v.5 no.3
    • /
    • pp.307-316
    • /
    • 2007
  • In real system application, the interacting multiple model (IMM) based algorithm operates with the following problems: it requires less computing resources as well as a good performance with respect to the various target maneuvering, it requires a robust performance with respect to the time-varying measurement noise, and further, it requires an easy design procedure in terms of its structures and parameters. To solve these problems, an adaptive fuzzy interacting multiple model (AFIMM) algorithm, which is based on the basis sub-models defined by considering the maneuvering property and the time-varying mode transition probabilities designed by using the mode probabilities as the inputs of the fuzzy decision maker whose widths are adjusted, is proposed. To verify the performance of the proposed algorithm, a radar target tracking is performed. Simulation results show that the proposed AFIMM algorithm solves all problems in the real system application of the IMM based algorithm.

Designing walking robot using Theo Jansen Mechanism (Theo Janson Mechanism 을 이용한 보행 로봇 설계)

  • Lee, Byeongcheol
    • Proceeding of EDISON Challenge
    • /
    • 2016.03a
    • /
    • pp.411-416
    • /
    • 2016
  • Existing moving robots has several kinds of moving method; using wheel, jointed leg structure and so on. Wheel type can be operated by DC motor so it is simple and efficient. However, it is not appropriate to pass irregular terrain and obstacle. Leg structure type has an advantage in those cases. Generally, Leg structure is operated by several servo motors attached to each joint. It makes a robot heavier and more complicate due to increase of the degree of freedom. However, by using Theo Jansen Mechanism, one (or more) leg have only single-degree of freedom and can be operated by only one DC motor. So leg structure using Theo Jansen Mechanism will be good choice if robots have to be mass-produced. This paper describes the following a walking robot designed and produced based on Theo Jansen Mechanism, simulating process of Theo Jansen leg structure using Edison m.Sketch and how to solve several of discovered problem of the robot.

  • PDF

Development of Biped Walking Robot and Its Swing Motion (이족 보형로봇 개발과 그네 운동)

  • Park, Seong-Hoon;Kim, Jee-Hong;Yi, Soo-Yeong;Chong, Kil-To;Sung, Young-Whee
    • Proceedings of the KIEE Conference
    • /
    • 2003.07d
    • /
    • pp.2411-2413
    • /
    • 2003
  • A new small humanoid robot system is developed in this paper. The humanoid robot has total 20 DOFs : 6 DOFs in each legs, 3 DOFs in each arms, and 2 DOFs in head, 34cms in height, and 2kgs in weight. The robot has the following characteristics: (1) PDA as host controller (2) network-based joint controller (3) wireless camera attached in robot's head (4) mechanism design by CATIA and high speed laser prototyping (5) graphic MMI(Man-Machine Interface) utilizing the CATIA data. By using ADXL inclination sensor, we implement the rope swing with the robot leg motion as well as walking.

  • PDF

A Digital Current Control using Single DC-Link Current Sensing of BLDC Actuation Systems (단일 DC-Link 전류 계측만을 이용한 BLDC 구동시스템의 디지털 전류 제어)

  • Hahn, Bongsu
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.22 no.1
    • /
    • pp.72-80
    • /
    • 2019
  • In this paper, we propose a digital DC-Link current control approach for BLDC actuation systems. The proposed approach consists of the following two components: first, DC-Link current measurement with sampling instances synchronized with PWM frequency, and second, current control using single DC-Link current rather than three phases current of a motor. The proposed method proved its performance through experiments and simulation. The results showed that the control performance are increased compared with the BLDC actuation system which does not use current control.

Development of Human Following Method of Mobile Robot Using TRT Pose (TRT Pose를 이용한 모바일 로봇의 사람 추종 기법)

  • Choi, Jun-Hyeon;Joo, Kyeong-Jin;Yun, Sang-Seok;Kim, Jong-Wook
    • IEMEK Journal of Embedded Systems and Applications
    • /
    • v.15 no.6
    • /
    • pp.281-287
    • /
    • 2020
  • In this paper, we propose a method for estimating a walking direction by which a mobile robots follows a person using TRT (Tensor RT) pose, which is motion recognition based on deep learning. Mobile robots can measure individual movements by recognizing key points on the person's pelvis and determine the direction in which the person tries to move. Using these information and the distance between robot and human, the mobile robot can follow the person stably keeping a safe distance from people. The TRT Pose only extracts key point information to prevent privacy issues while a camera in the mobile robot records video. To validate the proposed technology, experiment is carried out successfully where human walks away or toward the mobile robot in zigzag form and the robot continuously follows human with prescribed distance.

Case Study on Competency-based Maker and Design Education using Marine Robot (해양로봇 활용의 역량중심 메이커 및 설계 교육 사례 연구)

  • Kim, Hyun-Sik
    • Journal of Engineering Education Research
    • /
    • v.24 no.2
    • /
    • pp.12-19
    • /
    • 2021
  • Recently, the need of the future education in youth and univesity is rapidly increasing according to 4th industrial revolution. However, the maker and design education as a kind of youth and university future education has the following problems: it is implemented as an interesting convergence education including software education, it is managed by integrating youth and university competencies, it is composed in the form of blended class of consilient subject and nonsubject, it requires considering satisfaction in competency measurement and management, it is connected with entering school and getting job. To solve these problems, a case study on competency-based maker and design education using marine robot, which is based on the process-based learing method, integrated competency of youth and university, blended-type curriculum in terms of online and offline, is executed. To verify the competency-based maker and design education, the satisfaction survey in subject and nonsubject is performed. Study results show the example of the marine robot-based maker and design education and the need for additional study.