• Title/Summary/Keyword: 로봇 동역학

Search Result 113, Processing Time 0.065 seconds

Dynamic Modeling and Path-tracking of Differential Drive Wheeled-Mobile Robots (구동토크의 제약을 갖는 차동 구륜이동로봇의 동역학 모델링과 경로추적)

  • Moon, Jong-Woo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.51 no.1
    • /
    • pp.45-51
    • /
    • 2002
  • In this paper are presented dynamic modeling and path-tracking of differential drive wheeled-mobile robots(WMRs) having the limited drive-torques. Instantaneously coincident coordinate system, force/torque propagation and Newton's equilibrium law are used to induce the dynamic model. When drive-torques generated by inverse dynamics exceed the limitation, we make wheeled-mobile robots follow the reference path by modifying the planned reference trajectory with time-scaling method. The controller is introduced to compensate for error owing to modeling uncertainty and measurement noise. And simulation results prove that method proposed by this paper is efficient.

Development of Autonomous Bio-Mimetic Ornamental Aquarium Fish Robotic (생체 모방형의 아쿠아리움 관상어 로봇 개발)

  • Shin, Kyoo Jae
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.4 no.5
    • /
    • pp.219-224
    • /
    • 2015
  • In this paper, the designed fish robots DOMI ver1.0 is researched and development for aquarium underwater robot. The presented fish robot consists of the head, 1'st stage body, 2nd stage body and tail, which is connected two point driving joints. The model of the robot fish is analysis to maximize the momentum of the robot fish and the body of the robot is designed through the analysis of the biological fish swimming. Also, Lighthill was applied to the kinematics analysis of robot fish swimming algorithms, we are applied to the approximate method of the streamer model that utilizes techniques mimic the biological fish. The swimming robot has two operating mode such as manual and autonomous operation modes. In manual mode the fish robot is operated to using the RF transceiver, and in autonomous mode the robot is controlled by microprocessor board that is consist PSD sensor for the object recognition and avoidance. In order to the submerged and emerged, the robot has the bladder device in a head portion. The robot gravity center weight is transferred to a one-axis sliding and it is possible to the submerged and emerged of DOMI robot by the breath unit. It was verified by the performance test of this design robot DOMI ver1.0. It was confirmed that excellent performance, such as driving force, durability and water resistance through the underwater field test.

Robust Adaptive Fuzzy Tracking Control Using a FBFN for a Mobile Robot with Actuator Dynamics (구동기 동역학을 가지는 이동 로봇에 대한 FBFN을 이용한 강인 적응 퍼지 추종 제어)

  • Shin, Jin-Ho;Kim, Won-Ho;Lee, Moon-Noh
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.4
    • /
    • pp.319-328
    • /
    • 2010
  • This paper proposes a robust adaptive fuzzy tracking control scheme for a nonholonomic mobile robot with external disturbances as well as parameter uncertainties in the robot kinematics, the robot dynamics, and the actuator dynamics. In modeling a mobile robot, the actuator dynamics is integrated with the robot kinematics and dynamics so that the actuator input voltages are the control inputs. The presented controller is designed based on a FBFN (Fuzzy Basis Function Network) to approximate an unknown nonlinear dynamic function with the uncertainties, and a robust adaptive input to overcome the uncertainties. When the controller is designed, the different parameters for two actuator models in the actuator dynamics are taken into account. The proposed control scheme does not require the kinematic and dynamic parameters of the robot and actuators accurately. It can also alleviate the input chattering and overcome the unknown friction force. The stability of the closed-loop control system including the kinematic control system is guaranteed by using the Lyapunov stability theory and the presented adaptive laws. The validity and robustness of the proposed control scheme are shown through a computer simulation.

Formation Control of Mobile Robots using PID Controller with Neural Networks (신경회로망 PID 제어기를 이용한 이동로봇의 군집제어)

  • Kim, Yong-Baek;Park, Jin-Hyun;Choi, Young-Kiu
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.8
    • /
    • pp.1811-1817
    • /
    • 2014
  • In this paper, a PID controller with interpolated gains by use of neural networks is proposed for the formation control problem that following robots track a leading robot with constant distances and angles when there are changes in the mass of the following robot. The whole control system is composed of a kinematic controller and a dynamic controller considering the robot dynamics. The dynamic controller is the PID controller with varying gains, and the proper gains are obtained for some representative masses of the follower robot by the genetic algorithm. Neural networks is trained using the genetic algorithm with the gain data obtained in the previous step. The trained neural network determines optimal PID gains for a random mass of following robot. Simulation studies show that for arbitrary masses of the tracking robot, the PID controller with interpolated gains by the trained neural network has better tracking performance than that of the PID controller with fixed gains.

Control Algorithm for Stable Galloping of Quadruped Robots on Irregular Surfaces (비평탄면에서의 4 족 로봇의 갤로핑 알고리즘)

  • Shin, Chang-Rok;Kim, Jang-Seob;Park, Jong-Hyeon
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • This paper proposes a control algorithm for quadruped robots moving on irregularly sloped uneven surfaces. Since the body balance of a quadruped robot is controlled by the forces acting on its feet during touchdown, the ground reaction force (GRF) is controlled for stable running. The desired GRF for each foot is generated on the basis of the desired galloping pattern; this GRF is then compared with the actual contact force. The difference between the two forces is used to modify the foot trajectory. The desired force is realized by considering a combination of the rate change of the angular and linear momenta at flight. Then, the amplitude of the GRF to be applied at each foot in order to achieve the desired linear and angular momenta is determined by fuzzy logic. Dynamic simulations of galloping motion were performed using RecurDyn; these simulations show that the proposed control method can be used to achieve stable galloping for a quadruped robot on irregularly sloped uneven surfaces.

Longitudinal Flight Dynamic Modeling and Stability Analysis of Flapping-wing Micro Air Vehicles (날갯짓 비행 로봇의 세로방향 비행 동역학 모델링 및 안정성 해석)

  • Kim, Joong-Kwan;Han, Jong-Seob;Kim, Ho-Young;Han, Jae-Hung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This paper investigates the longitudinal flight dynamics and stability of flapping-wing micro air vehicles. Periodic external forces and moments due to the flapping motion characterize the dynamics of this system as NLTP (Non Linear Time Periodic). However, the averaging theorem can be applied to an NLTP system to obtain an NLTI (Non Linear Time Invariant) system which allows us to use a standard eigen value analysis to assess the stability of the system with linearization around a reference point. In this paper, we investigate the dynamics and stability of a hawkmoth-scale flapping-wing air vehicle by establishing an LTI (Linear Time Invariant) system model around a hovering condition. Also, a direct time integration of full nonlinear equations of motion of the flapping-wing micro air vehicle is conducted to see how the longitudinal flight dynamics appear in the time domain beyond the reference point, i.e. hovering condition. In the study, the flapping-wing air vehicle exhibited three distinct dynamic modes of motion in the longitudinal plane of motion: two stable subsidence modes and one unstable oscillatory mode. The unstable oscillatory mode is found to be a combination of a pitching velocity state and a forward/backward velocity state.

Development of an Experimental Humanoid Robot and Dynamics Based Motion Optimization for Rescue Missions (구조/구난 임무 수행을 위한 실험용 휴머노이드 로봇의 개발과 동역학 기반의 모션 최적화)

  • Hong, Seongil;Lee, Youngwoo;Park, Kyu Hyun;Lee, Won Suk;Sim, Okkee;Oh, Jun-Ho
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.8
    • /
    • pp.753-757
    • /
    • 2015
  • This paper introduces an experimental rescue robot, HUBO T-100 and presents the optimal motion control method. The objective of the rescue robot is to extract patients or wounded soldiers in the battlefield and hazardous environments. Another mission is to dispose and transport an explosive ordnance to safe places. To execute these missions, the upper body of the rescue robot is humanoid in form to execute various kinds of tasks. The lower body features a hybrid tracked/legged design, which allows for a variety of mode of locomotion, depending on terrain conditions in order to increase traversability. The weight lifting motion is one of the most important task for performing rescue related missions because the robot must lift an object or impaired person lying on the ground for transferring. Here, dynamics based motion optimization is employed to minimize joint torques while maintaining stability simultaneously. Physical experiments with a real humanoid robot, HUBO T-100, are presented to verify the proposed method.

Crossing Dynamics of Leader-guided Two Flocks (우두머리가 있는 두 생물무리의 가로지르기 동역학)

  • Lee, Sang-Hee
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.3
    • /
    • pp.37-43
    • /
    • 2010
  • In field, one can observe without difficulties that two flocks are intersected or combined with each other. For example, a fish flock in a stream separates into two part by obstacles (e.g. stone) and rejoins behind the obstacles. The dynamics of two flocks guided by their leader were studied in the situation where the flocks cross each other with a crossing angle, ${\theta}$, between their moving directions. Each leader is unaffected by its flock members whereas each member is influenced by its leader and other members. To understand the dynamics, I investigated the order parameter, ${\phi}$, defined by the absolute value of the average unit velocity of the flocks' members. When the two flocks were encountered, the first peak in ${\phi}$ was appeared due to the breaking of the flocks' momentum balance. When the flocks began to separate, the second peak in ${\phi}$ was observed. Subsequently, erratic peaks were emerged by some individuals that were delayed to rejoin their flock. The amplitude of the two peaks, $d_1$ (first) and $d_2$ (second), were measured. Interestingly, they exhibited a synchronized behavior for different ${\theta}$. This simulation model can be a useful tool to explore animal behavior and to develop multi-agent robot systems.

The Current-Position Cascade PID Control of Delta-type Parallel Robot (델타 로봇의 전류-위치 Cascade PID 제어)

  • Paek, Dong-Hee;Kim, Yeong-Dae;Cho, Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.273-284
    • /
    • 2020
  • This paper proposes a method of designing and controlling delta robots with low-cost DC motors, which are widely used in the automation process. Simulation was performed by interpreting the mechanics and dynamics of the delta robot, and based on this analysis, low-cost DC motor was selected. Experiments were conducted to obtain characteristic values of motors and the current-position cascade control system was designed and implemented. In order to verify the feasibility of the proposed system, the experiment to check that the end-effector of the delta robot follows the target path was progressed. Through the experiment, the limitations of using low-cost motors were overcome by designing compensation algorithms and the performance of the position control was verified.

An RMRAC Controller for Permanent Magnet Synchronous Motor Based On Modified Current Dynamics (보정된 전류동역학에 기반한 영구자석 전동기의 참조모델 강인적응제어기)

  • Jin, Hong-Zhe;Lee, Jang-Myung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.14 no.10
    • /
    • pp.991-997
    • /
    • 2008
  • A new RMRAC scheme far the PMSM current regulation is proposed in a synchronous frame, which is completely free from the parameter's uncertainty. A current regulator of PMSM is the inner most loop of electromechanical driving systems and plays a foundation role in the control hierarchy. When the PMSM runs in high speed, the cross-coupling terms must be compensated precisely for large system BW. In the proposed RMRAC, the input signal is composed of a calculated voltage defined by MRAC law and an output of the disturbance compensator. The gains of feed forward and feedback controller are estimated by the proposed modified gradient method, where the system disturbances are assumed as filtered current regulation errors. After the compensation of the system disturbance from error information, the corresponding voltage is fed forward to control input to compensate for real disturbances. The proposed method robustly compensates the system disturbance and cross-coupling terms. It also shows a good realtime performance due to the simplicity of control structure. Through real experiments, the efficiency of the proposed method is verified.