• 제목/요약/키워드: 로봇에이전트

검색결과 109건 처리시간 0.027초

강화 학습을 사용한 동적 게임 환경에서의 빠른 경로 탐색 (Fast Navigation in Dynamic 3D Game Environment Using Reinforcement Learning)

  • 이승준;장병탁
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2005년도 한국컴퓨터종합학술대회 논문집 Vol.32 No.1 (B)
    • /
    • pp.703-705
    • /
    • 2005
  • 연속적이고 동적인 실세계에서의 경로 탐색 문제는 이동 로봇 분야에서 주된 문제 중 하나였다. 최근 컴퓨터 성능이 크게 발전하면서 컴퓨터 게임들이 실제에 가까운 연속적인 3차원 환경 모델을 사용하기 시작하였고, 그에 따라 보다 복잡하고 동적인 환경 모델 하에서 경로 탐색을 할 수 있는 능력이 요구되고 있다. 강화 학습 기반의 경로 탐색 알고리즘인 평가치 반복(Value iteration) 알고리즘은 실시간 멀티에이전트 환경에 적합한 여러 장점들을 가지고 있으나, 문제가 커질수록 속도가 크게 느려진다는 단점을 가지고 있다. 본 논문에서는 연속적인 3차원 상황에서 빠르게 동적 변화에 적응할 수 있도록 하기 위하여 작은 세상 네트웍 모델을 사용한 환경 모델 및 경로 탐색 알고리즘을 제안한다. 3차원 게임 환경에서의 실험을 통해 제안된 알고리즘이 연속적이고 복잡한 실시간 환경 하에서 우수한 경로를 찾아낼 수 있으며, 환경의 변화가 관측될 경우 이에 빠르게 적응할 수 있음을 확인할 수 있었다.

  • PDF

효율적인 컨텍스트 분류를 위한 베이지안 네트워크 구조의 제한 학습 (Constrained Learning Method of Bayesian Network Structure for Efficient Context Classification)

  • 황금성;조성배
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2004년도 가을 학술발표논문집 Vol.31 No.2 (1)
    • /
    • pp.112-114
    • /
    • 2004
  • 지능형 로봇 에이전트 기술이 발전하면서 서비스 질을 높이기 위한 방법으로 컨텍스트의 활용성이 부각되고 있다. 하지만 컨텍스트 분류 기술들은 아직까지 초기 개발 단계이며 다양한 방법들이 시도되고 있다. 본 논문에서는 전문가의 지식과 학습된 지식을 함께 적용할 수 있고 사람이 그 내용을 이해하기 유리한 베이지안 네트워크(BN)를 이용한 컨텍스트 분류 방법을 제안한다. 일반적인 BN 구조 학습에 사전 지식 및 방향성, 연결 관계 범위를 부여할 수 있는 제한(Constraint)을 적용한 효율적인 컨텍스트 분류 방법을 소개하고, 몇 가지 비교 실험을 통해 기존 방법에 비해 전문가의 개입이 줄어들고 좀 더 신뢰성 있는 컨텍스트 분류기를 얻을 수 있음을 보인다.

  • PDF

Unity 3D 기반 ML-Agents Toolkit을 이용한 강화 학습 환경 설계 및 구현 (Design and Implementation of Reinforcement Learning Environment Using Unity 3D-based ML-Agents Toolkit)

  • 최호빈;김찬명;김주봉;한연희
    • 한국정보처리학회:학술대회논문집
    • /
    • 한국정보처리학회 2019년도 춘계학술발표대회
    • /
    • pp.548-551
    • /
    • 2019
  • 강화 학습은 일반적으로 제어 로봇과 관련이 있는 순차적 의사결정을 위한 학습의 한 형태이다. 이 강화 학습은 행동에 대한 보상을 최대로 하는 정책을 학습하는 것을 목표로 한다. 하지만, 강화 학습을 실제 세계에 적용하기에는 많은 제약사항이 존재하며 실제 세계의 복잡한 환경에서 좋은 정책을 학습하는 것은 매우 어렵다. Unity는 강화 학습 시뮬레이션을 위한 전용 Toolkit을 제공한다. 이러한 이유로 Unity를 시뮬레이터로서 사용하는 것이 좋은 정책을 학습하는 훈련의 근거가 된다. 따라서 본 논문에서는 강화 학습을 실제 세계에 바로 적용시키기 전에 Unity Machine Learning Agents Toolkit을 사용하여 실제 세계와 비슷한 환경을 만들고 강화 학습을 통해 에이전트를 미리 학습시켜보는 과정을 수행해봄으로써 시뮬레이터의 필요성을 부각시킨다.

유비쿼터스 컴퓨팅 환경에서 상황인식 기반 TV 응용 서버스 (Context-aware based TV Application Services in Ubiquitous Computing Environments)

  • 문애경;이강우;김형선;김현;이수원
    • 한국통신학회논문지
    • /
    • 제31권7B호
    • /
    • pp.619-631
    • /
    • 2006
  • 유비쿼터스 컴퓨팅 환경이 도래함에 따라 사용자의 명시적 요구에 따라 제공되는 서비스 보다는 상황정보를 활용하여 능동적인 서비스를 지원할 수 있는 기술이 필요하다. 따라서 본 논문에서는 컨텐츠 추천 서비스 에이전트와 상황인식 기반 태스크를 포함하는 CAMUS(Context-Aware Middleware for URC Systems) 시스템을 이용한 상황인식 기반 능동형 서버스를 제안한다. CAMUS 는 사용자의 요청이 없더라도 로봇 또는 컴퓨터가 현재의 상황을 인식하여 그 상황에 맞는 정보와 서비스를 제공할 수 있도록 지원하는 소프트웨어 프레임워크이다. 제안된 서비스를 평가하기 위하여 TV 응용 도메인에 적용한다. 이를 위해, TV 프로그램 추천 및 TV 제어 서비스 에이전트 그리고 TV 도우미 태스크를 구현한다. TV 도우미 태스크는 사용자 위치, 음성 등의 상황 정보에 따라 TV 프로그램 추천 및 제어 서비스를 실행할 수 있도록 한다.

다양한 이동속도를 지원하는 대규모 네트웍 가상 환경을 위한 예측 기반 동시성 제어 (Predict ion-based Concurrency Control for A Large Scale Networked Virtual Environment Supporting Various Navigation Speed)

  • 이은희;이동만;한승현;현순주
    • 한국정보과학회:학술대회논문집
    • /
    • 한국정보과학회 2001년도 가을 학술발표논문집 Vol.28 No.2 (3)
    • /
    • pp.202-204
    • /
    • 2001
  • 가상 세계의 공유 개념은, 특히 사용자들이 인터넷 같이 대규모 네트웍을 통해 지역적으로 분산된 경우는 복제가 수용할 수 있는 상호작용 성능을 제공하기 때문에 각 사용자의 사이트에 정보를 복제함으로써 확장된다. 그러나, 다수의 동시 갱신은 replicas간의 일관되지 않은 뷰를 일으키게 될 것이다. 따라서, 동시성 제어가 복제자들간에 일관된 상태를 유지하도록 하기 위한 중요한 요소가 된다. 우리는 단지 대상 객체의 주변에 있는 사용자들만이 소유권 요청을 다중 전송하게 하는 확장성 있는 예측기반 동시성 제어 스킴을 제안했었다. 이 작업에서, 우리는 모든 사용자들이 동일한 속도론 가지고 가상 세계를 이동한다고 가정했다. 이것은, 그러나, 좀더 사실성을 더하기 위해 사용자가 가상 세계와 상호작용을 할 매 그들의 이동속도를 변경하도록 하는 네트웍 게임같은 네트웍 가상 환경에서는 너무 common 하다. 본 논문은 다양한 속도를 가진 사자를 지원하기 위한 확장을 제안한다. 확장된 스킴은 다른 속도의 수만큼의 다중 Entity Radii를 가지며 각 속도를 가진 사용자에게 분리된 큐를 할당한다. 각 큐는 다음 소유자 후보를 예측하기 위해 동시에 예측을 수행하고 선택된 후보들간에서 최소의 Predicted Collision Time을 가지는 최종 후보자가 선택된다. 이는 사용자의 속도에 기반을 둔 적절한 Entity Radius를 사용함으로써 소유권의 timely advanced transfer과, 다른 이돔 속도와 latency를 가지는 사용자들 간의 간섭을 줄임으로써 공정(공평)한 소유권 양도, 그리고 불필요한 소유권 전송을 줄임으로써 놓은 예측 정확도를 제공한다.성을 지닌 AMMQL 학습법은 로봇축구와 같이 끊임없이 실시간적으로 변화가 일어나는 다중 에이전트 환경에서 특히 높은 효과를 볼 수 있다. 본 논문에서는 AMMQL 학습방법의 개념을 소개하고, 로봇축구 에이전트의 동적 위치 결정을 위한 학습에 어떻게 이 학습방법을 적용할 수 있는지 세부 설계를 제시한다.다.으로서 hemicellulose구조가 polyuronic acid의 형태인 것으로 사료된다. 추출획분의 구성단당은 여러 곡물연구의 보고와 유사하게 glucose, arabinose, xylose 함량이 대체로 높게 나타났다. 점미가 수가용성분에서 goucose대비 용출함량이 고르게 나타나는 경향을 보였고 흑미는 알칼리가용분에서 glucose가 상당량(0.68%) 포함되고 있음을 보여주었고 arabinose(0.68%), xylose(0.05%)도 다른 종류에 비해서 다량 함유한 것으로 나타났다. 흑미는 총식이섬유 함량이 높고 pectic substances, hemicellulose, uronic acid 함량이 높아서 콜레스테롤 저하 등의 효과가 기대되며 고섬유식품으로서 조리 특성 연구가 필요한 것으로 사료된다.리하였다. 얻어진 소견(所見)은 다음과 같았다. 1. 모년령(母年齡), 임신회수(姙娠回數), 임신기간(姙娠其間), 출산시체중등(出産時體重等)의 제요인(諸要因)은 주산기사망(周産基死亡)에 대(對)하여 통계적(統計的)으로 유의(有意)한 영향을 미치고 있어 $25{\sim}29$세(歲)의 연령군에서, 2번째 임신과 2번째의 출산에서 그리고 만삭의 임신 기간에, 출산시체중(出産時體重) $3.50{\sim}3.99kg$사이의 아

  • PDF

인터넷 학술정보자원의 디렉토리 서비스 설계에 있어서 DDC 분류체계의 활용에 관한 연구 (A study on the use of DDC scheme in directory search engine for research information resources on internet)

  • 최재황
    • 정보관리학회지
    • /
    • 제15권2호
    • /
    • pp.47-68
    • /
    • 1998
  • 인터넷이 제공하는 학술정보자원은 풍부하지만 그 중에서 이용자들이 자신에게 필요한, 좋은 정보를 찾기는 쉽지 않다. 체계적으로 정리되어 있지 않기 때문이다. 본 연구에서는 도서관에서 오랫동안 이용해온 분류체계인 DDC(Dewey Decimal Classification)을 이용하여 학술분야 인터넷정보자원을 검색할 주제별 디렉토리 검색엔진을 설계하였다. 이 검색엔진을 설계함에 있어서 대개념에서 소개념으로 특정주제를 세분해가는 DDC의 '체계적 배열'에 따라 분류코드를 설계하였고, DDC의 '상관색인'을 이용하여 자동 문서분류사전을 작성하였다.

  • PDF

생체 기반 시각정보처리 동작인식 모델링 (A Bio-Inspired Modeling of Visual Information Processing for Action Recognition)

  • 김진옥
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제3권8호
    • /
    • pp.299-308
    • /
    • 2014
  • 신체 동작, 얼굴 표정과 같이 아주 복잡한 생체 패턴을 인식하고 분류하는 인간의 능력을 모방한 정보처리 컴퓨팅 관련 연구가 최근 다수 등장하고 있다. 특히 컴퓨터비전 분야에서는 인간의 뛰어난 인지 능력 중 상황정보 없이 시각시퀀스에서 동작을 분류하는 기능을 통해 시공간적 패턴 코딩과 빠른 인식 방법을 이해하고자 한다. 본 연구는 비디오 시퀀스상의 동작인식에 생물학적 시각인지과정의 영향을 받은 생체 기반 컴퓨터비전 모델을 제시하였다. 제안 모델은 이미지 시퀀스에서 동작을 검출하고 시각 패턴을 판별하는 데 생체 시각처리과정의 신경망 구조 단계를 반영하였다. 실험을 통해 생체 기반 동작인식 모델이 인간 시각인지 처리의 여러 가지 속성을 고려했을 뿐 아니라 기존 동작인식시스템에 비해 시간 정합성이 뛰어나며 시간 변화에 강건한 분류 능력을 보임을 알 수 있다. 제안 모델은 지능형 로봇 에이전트와 같은 생체 기반 시각정보처리 시스템 구축에 기여할 수 있다.

3차원 가상 실내 환경을 위한 심층 신경망 기반의 장면 그래프 생성 (Deep Neural Network-Based Scene Graph Generation for 3D Simulated Indoor Environments)

  • 신동협;김인철
    • 정보처리학회논문지:소프트웨어 및 데이터공학
    • /
    • 제8권5호
    • /
    • pp.205-212
    • /
    • 2019
  • 장면 그래프는 영상 내 물체들과 각 물체 간의 관계를 나타내는 지식 그래프를 의미한다. 본 논문에서는 3차원 실내 환경을 위한 3차원 장면 그래프를 생성하는 모델을 제안한다. 3차원 장면 그래프는 물체들의 종류와 위치, 그리고 속성들뿐만 아니라, 물체들 간의 3차원 공간 관계들도 포함한다. 따라서 3차원 장면 그래프는 에이전트가 활동할 실내 환경을 묘사하는 하나의 사전 지식 베이스로 볼 수 있다. 이러한 3차원 장면 그래프는 영상 기반의 질문과 응답, 서비스 로봇 등과 같은 다양한 분야에서 유용하게 활용될 수 있다. 본 논문에서 제안하는 3차원 장면 그래프 생성 모델은 크게 물체 탐지 네트워크(ObjNet), 속성 예측 네트워크(AttNet), 변환 네트워크(TransNet), 관계 예측 네트워크(RelNet) 등 총 4가지 부분 네트워크들로 구성된다. AI2-THOR가 제공하는 3차원 실내 가상환경들을 이용한 다양한 실험들을 통해, 본 논문에서 제안한 모델의 높은 성능을 확인할 수 있었다.

FACS와 AAM을 이용한 Bayesian Network 기반 얼굴 표정 인식 시스템 개발 (Development of Facial Expression Recognition System based on Bayesian Network using FACS and AAM)

  • 고광은;심귀보
    • 한국지능시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.562-567
    • /
    • 2009
  • 얼굴 표정은 사람의 감정을 전달하는 핵심 메커니즘으로 이를 적절하게 활용할 경우 Robotics의 HRI(Human Robot Interface)와 같은 Human Computer Interaction에서 큰 역할을 수행할 수 있다. 이는 HCI(Human Computing Interface)에서 사용자의 감정 상태에 대응되는 다양한 반응을 유도할 수 있으며, 이를 통해 사람의 감정을 통해 로봇과 같은 서비스 에이전트가 사용자에게 제공할 적절한 서비스를 추론할 수 있도록 하는 핵심요소가 된다. 본 논문에서는 얼굴표정에서의 감정표현을 인식하기 위한 방법으로 FACS(Facial Action Coding System)와 AAM(Active Appearance Model)을 이용한 특징 추출과 Bayesian Network 기반 표정 추론 기법이 융합된 얼굴표정 인식 시스템의 개발에 대한 내용을 제시한다.