• Title/Summary/Keyword: 로듐

Search Result 41, Processing Time 0.022 seconds

Solvent Extraction of Platinum Group Metals from the leach Liquor of Spent Automotive Catalyst (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 백금족(白金族) 금속(金屬)의 용매추출(溶媒抽出))

  • Kim, Mi-Ae;Lee, Jae-Chun;Kim, Chi-Kwon;Kim, Min-Seuk;Kim, Byung-Su;Yoo, Kyoung-Keun
    • Resources Recycling
    • /
    • v.15 no.5 s.73
    • /
    • pp.3-10
    • /
    • 2006
  • The solvent extraction for the separation of platinum group metals from the leach liquor of spent automotive catalysts has been studied. Tri-n-butyl phosphate (TBP), tri-n-octylamine (TOA) and di-n-hexyl sulfide (DHS) were used as extractants and kerosene as a diluent. The extraction behavior of platinum, palladium and rhodium has been investigated as functions of different kinds of extractants and their concentrations. In addition, the extraction behavior of the major metal impurities such as cerium, lead, iron, magnesium and aluminum has been investigated. Platinum and palladium were extracted with TBP. And platinum, palladium and rhodium were extracted with TOA. Platinum was co-extracted with palladium into the organic phase by solvent extraction using SFI-6 of DHS extractant, but only palladium was selectively extracted with SFI-6R. The selective extraction of palladium with SFI-6R was found better than that with SFI-6, but the kinetics of extraction with SFI-6R was found poor in comparison to SFI-6. The metal impurities extracted simultaneously during the extraction of platinum group metals should be removed in scrubbing and stripping processes. A suitable process has been proposed for the separation of platinum group metals from the leach liquor of spent automotive catalysts. Initially palladium was extracted with SFI-6R, followed by the separation of platinum with TBP or TOA leaving rhodium in the raffinate.

Synthesis, ESR and Electrochemical Characterization of Dioxygen Binding to Dirhodium Complexes with 2-anilinopyridinato Bridging Ligand (2-아닐리노 피리딘을 배위자로 하는 이핵 로듐착물의 두 산소첨가 생성물에 대한 합성 및 전기화학적 성질)

  • Kwang Ha Park;Moo Jin Jun;John. L. Bear
    • Journal of the Korean Chemical Society
    • /
    • v.33 no.6
    • /
    • pp.633-643
    • /
    • 1989
  • The R$Rh_2(ap)_4$(2,2-trans) isomer (ap = 2-anilinopyridinate), which has two anilino nitrogens and two pyridyl nitrogens bound to each rhodium ion trans to their own kind, shows activation towards the one electron reduction of dioxygen at -0.40 V vs SCE. The ESR spectrum taken at 123 K proves the formation of a $[Rh_2(ap)_4(O_2)]$ ion with oxygen axially bound to one rhodium ion and the complex is at a RhⅡ2 oxidation state. The complex will form [$Rh_2(ap)_4(O_2)(CH_3CN)]^-$ in presence of $CH_3CN/CH_2Cl_2$ mixture without breaking the Rh-$O_2^-$ bond. When oxidized at -0.25 and 0.55 V, $[Rh_2(ap)_4(O_2)]$ will undergo two one electron oxidations to form $Rh_2(ap)_4(O_2)[Rh_2(ap)_4(O_2)]^+$. Both species have an axially bound superoxide ion but the former is at $Rh^{II}Rh^{III }$and the later at $Rh^{III}_2$ oxidation states. The ESR spetra and $CH_3CN$ addition study, on the other hand, show that the later complex is better described as $[Rh_{II}Rh^{III}(ap)_4(O_2)]^+$ with the odd electron localized on rhodium ion and the complex has an axially coordinated molecular oxygen. The electrochemical and ESR studies also show that the degree of dioxygen activation is a function of electrochemical redox potential.

  • PDF

Determination of Rhodium by Inverted Catalytic Hydrogen peak as Analytical peak (뒤집힌 촉매수소 전류 봉우리를 이용한 로듐의 정량)

  • Kwon, Young-Soon;Lim, Kyong-Hee
    • Analytical Science and Technology
    • /
    • v.16 no.4
    • /
    • pp.269-276
    • /
    • 2003
  • A new type of stripping voltammetry, inverted catalytic stripping voltammetry $IC_tSV$, is introduced. The rhodium-formaldehyde complex in hydrochloric acid gives an inverted catalytic hydrogen peak (reduction current peak during positive-going scan). The characteristics of the inverted peak were studied. By using the peak as analytical peak the detection limit of $1.2{\times}10^{-10}M$ Rh (50s preconcentration) can be reached at the optimal conditions: 0.015% (W/V) HCHO-0.42 M HCl; accumulation potential, -1.1 V; scan rate, 100 mV/s.

백금 합금의 고온산화휘발특성

  • Kim, Nam-Seok;Hyeon, Seung-Gyun;Kim, Mok-Sun;Hong, Gil-Su;Yang, Seung-Ho;Yun, Won-Gyu
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2010.05a
    • /
    • pp.50.1-50.1
    • /
    • 2010
  • 내열성과 내부식성, 촉매능력등이 뛰어난 백금은 자동차 배출가스 정화촉매, 유/무기화학반응의 공정 촉매, 석유화학산업에서의 촉매 등 촉매 뿐만 아니라 용융유리용 도가니, 유리 섬유용 부싱 등의 유리산업, 백금 열전대 외에도 전기/전자기기, 치과용 합금, 장신구, 항공우주,등의 많은 분야에서 폭넓게 쓰인다. 한편 낮은 기계적 특성을 개선하기 위하여 로듐 등의 백금족 원소를 첨가한 합금을 제조하여 이용하고 있지만 로듐의 공금 부족과 이에 따른 가격 상승으로 인한 대체조성의 설계가 요구되고 있다. 또한 고온의 산화분위기에 노출이 되면 산화물이 형성되고 이것이 휘발하여 중량의 손실이 생긴다고 알려져 있다. 본 연구에서는 백금 합금의 이러한 문제점의 해결방안을 제시하고자 백금족 원소를 첨가하고 첨가 원소별 산화휘발의 정도를 측정하였다. 시편은 plasma arc melting법으로 각각 Pt, Pt-20%Rh, Pt-11%Ir, Pt-10%Rh-10%Ir의 조성을 가지는 합금을 만든 후 압연을 하여 판상으로 만들었고, 이를 각각 $1000^{\circ}C$, $1200^{\circ}C$, $1400^{\circ}C$ 등에서 각각 96시간 까지 산화휘발시켜 중량손실량을 측정하였고 이를 XPS를 이용한 표면분석을 하여 산화휘발거동을 규명하였다. 그 결과 Pt-20%Rh가 가장 우수한 고온산화휘발특성을 보였으며 상대적으로 고온산화휘발특성이 좋지 않은 Pt-Ir 2원계 합금에 Rh를 첨가한 Pt-10%Rh-10%Ir 3원계 합금을 만들어 약 60% 향상된 결과를 얻을 수 있었고 이 결과를 증기압 관점에서 고찰하였다.

  • PDF

Digital Dynamic Compensation Methods of Rhodium Self-Powered Neutron Detector (로듐 자기출력형 중성자 계측기의 디지탈 동적 보상방법)

  • Auh, Geun-Sun
    • Nuclear Engineering and Technology
    • /
    • v.26 no.2
    • /
    • pp.205-211
    • /
    • 1994
  • The best method is selected among the 3 digital dynamic compensation methods which are developed or applied for the Rhodium self-powered neutron detector. The three digital dynamic compensation methods are the existing Dominant Pol Tustin method of the COLSS(Core Operating Limit Supervisory System), the Direct Inversion method and Kalman Filter method. The Direct Inversion method is an improved method of D. Hoppe and R. Maletti and the Kalman Filter method is developed using the Kalman Filter. Response times of the compensated signals to achieve 90% of a step input are 28.1, 17.2 and 6.5 seconds respectively for the same noise gain telling that the Kalman Filter method is the best amens the 3 methods.

  • PDF

Determination of Rhodium by Differential Pulse Polarography (펄스차이 폴라로그래피를 이용한 로듐의 정량)

  • Kwon, Young-Soon;Hong, Mi-Jeong;Czae, Myung-Zoon
    • Analytical Science and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-4
    • /
    • 2000
  • Determination of trace rhodium, based on catalytic reduction of protons by the adsorbed Rhformaldehyde complexes formed in formaldehyde-hydrochloric acid medium, was demonstrated. The condition for the measurements of Rh at trace levels was 0.004%(w/v) formaldehyde-0.75M hydrochloric acid. In this medium detection limit was $7.0{\times}10^{-12}M$ and the linear dynamic range was $1.0{\times}10^{-11}{\sim}1.0{\times}10^{-8}M$ Rh. There were no interferences from other platinum group metal ions even in the presence of a 500-fold excess.

  • PDF

Reconvery of Platinum Group Metals from Spent Automotive Catalysts by Hydrochloric Acid Leaching (自動車 廢觸媒로부터 鹽酸浸出에 의한 自金族 金屬의 回收)

  • Lee, Jae-Chun;Jeong, Jin-Ki;Kim, Min-Seuk;Kim, Byung-Su;Kim, Chi-Kwon
    • Resources Recycling
    • /
    • v.13 no.5
    • /
    • pp.28-36
    • /
    • 2004
  • The extraction of platinum group metals such as Pt, Pd and Rh from spent automobile catalyst has been investigated by leaching in HCl solutions using $HNO_3$ or NaOCl as a oxidant. The effect of type and amount of oxidant, reaction time and pulp density on the extraction of platinum group metals was examined. Platinum group metals were recovered by the cementation method using aluminum as a reducing agent. The extraction ratio was higher when NaOCl was used as a oxidant. The optimum leaching conditions were obtained to be: HCl 8 M, the amount of NaOCl 1.4 mole, leaching temperature $90^{\circ}C$, leaching time 180 minutes, pulp density 400g/L. Under the optimum conditions, the extraction of Pt, Pd and Rh were 96.1%, 93.6% and 77.3%, respectively. With the addition of 2.0g of aluminum which corresponds to 28 equivalent the reduction were 98% for Pt. 98.8% for Pd and 65.3% for Rh, respectively.

Recovery of Platinum Group Metals from the Leach Solution of Spent Automotive Catalysts by Cementation (자동차(自動車) 폐촉매(廢觸媒)의 침출액(浸出液)으로부터 시멘테이션에 의한 백금족(白金族) 금속(金屬)의 회수(回收))

  • Kim, Min-Seuk;Kim, Byung-Su;Kim, Eun-Young;Kim, Soo-Kyung;Ryu, Jae-Wook;Lee, Jae-Chun
    • Resources Recycling
    • /
    • v.20 no.4
    • /
    • pp.36-45
    • /
    • 2011
  • The recovery of platinum group metals (PGMs) from the leach solution of spent auto-catalyst and the wash solution of the leach residue was investigated in the laboratory scale experiments by the cementation process using metal powders as the reductant. In this study, the effect of Al, Mg and Zn powders on the cementation process was particularly examined. Aluminum powder was selected as the most suitable reductant for the cementation of PGMs. At the cementation time of 10 minute under the aluminium stoichimetric amount of 19.3 and the reaction temperature of $50{\sim}60^{\circ}C$, the recovery of platinum group metals from the leach solution of the spent auto-catalyst was found to be 99.3%, 99.4%, 90.2% for Pt, Pd and Rh, respectively. Under the same conditions with the aluminium stoichimetric amount of 45, the recovery of platinum group metals from the wash solution of the leach residue of spent catalyst was observed to be 97%, 97% and 90% for Pt, Pd and Rh, respectively. In addition, it was possible to upgrade the platinum group metals in the precipitates obtained from the cementation process by about 10% through the removal of metal impurities by the nitric acid leaching at ambient temperature.