• Title/Summary/Keyword: 렌즈 배열

Search Result 106, Processing Time 0.037 seconds

Calibration pattern for accurately-extracting lens array lattice in integral imaging (집적 영상에서 정확한 렌즈 배열 격자 검출을 위한 캘리브레이션 패턴)

  • Jeong, Hyeon-Ah;Cho, Hyunji;Yoo, Hoon
    • Proceedings of the Korean Society of Broadcast Engineers Conference
    • /
    • 2017.06a
    • /
    • pp.76-77
    • /
    • 2017
  • 본 논문에서는 집적 영상에서 렌즈 배열의 격자를 정확하게 검출하기 위한 캘리브레이션 패턴 영상을 제안한다. 렌즈 배열의 격자를 검출하기 위해서 수직, 수평 방향의 에지 영상이 필요하다. 입력 영상의 에지를 잘 검출하지 못하면, 렌즈 배열의 요소 영상 크기를 결정할 때 오류가 발생할 수 있다. 이를 위해, 본 논문에서는 에지를 잘 검출할 수 있는 캘리브레이션 패턴 영상을 제안하여 정확도를 향상 시킨다. 본 논문에서는 실험을 통하여 제안하는 방법이 기존의 방법보다 집적 영상에서 렌즈 배열의 격자를 검출할 때 우수하게 적용될 수 있음을 보여주었다.

  • PDF

Design of Rotman Lens for Curved Array Antenna with Minimal Phase Error (최소 위상 오차를 갖는 곡선 배열안테나용 Rotman 렌즈의 설계)

  • Park, Joo-Rae;Park, Dong-Chul
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.25 no.10
    • /
    • pp.1077-1086
    • /
    • 2014
  • We propose a design method of a Rotman lens for curved array antenna applicable to conformal array. In this paper, design equations are derived to obtain an array curve, transmission line lengths of a Rotman lens in conjunction with a curved array antenna, and the phase error of a Rotman lens based on these design equations is minimized through the beam curve optimization procedure and the refocusing procedure. Rotman lenses designed by the proposed design equations and design procedures still maintain 3 focal points, can feed a convex or concave array antenna with circular curve, parabolic curve, V-shaped curve, etc as well as a straight line array antenna, and have minimal phase error.

Numerical Reconstruction of Two-dimensional Object from the Image Captured by a Random Lens Array (불규칙 렌즈 배열을 통과한 영상을 이용한 2차원 물체의 수치적 복원)

  • Hong, Sung-In;Kim, Nam;Park, Jae-Hyeung
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.3
    • /
    • pp.120-124
    • /
    • 2013
  • We propose a method to reconstruct the two-dimensional object from an image captured through an array of random lenses each of which has random shape, size, and focal power. In the proposed method, the characteristics of the random lens array are estimated by capturing images for known elementary inputs, and then the object is reconstructed by measuring correlations between the random lens images of the object and the elementary inputs. The experimental results show that the original object can be recognized by the proposed reconstruction method. Nevertheless, further quality enhancement is required to increase feasibility and to extend to general three-dimensional object cases.

Computational view-point reconstruction method in three-dimensional integral imaging using lenslet array model (렌즈배열 모델을 적용한 3차원 집적영상 기술에서의 컴퓨터적 시점 재생 방법)

  • Shin, Dong-Hak;Kwon, Young-Man;Kim, Eun-Soo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.10
    • /
    • pp.1848-1853
    • /
    • 2006
  • In this paper, we propose a method to reconstruct resolution-improved 3D images computationally based on lenslet array model in integral imaging technique and analyze its performance. While conventional view-point reconstruction method has low resolution based on pinhole array model, the proposed method can obtain resolution-improved 3D images because of extracting multiple pixels from elemental images by use of lenslet way model. To show the usefulness of proposed method, we perform computational experiments and present its results.

Reconstruction Method of Spatially Filtered 3D images in Integral Imaging based on Parallel Lens Array (병렬렌즈배열 기반의 집적영상에서 공간필터링된 3차원 영상 복원)

  • Jang, Jae-Young;Cho, Myungjin
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.3
    • /
    • pp.659-666
    • /
    • 2015
  • In this paper, we propose a novel reconstruction method of spatially filtered 3D images in integral imaging based on parallel lens array. The parallel lens array is composed of two lens arrays, which are positioned side by side through longitudinal direction. Conventional spatial filtering method by using convolution property between periodic functions has drawback that is the limitation of the position of target object. this caused the result that the target object should be located on the low depth resolution region. The available spatial filtering region of the spatial filtering method is depending on the focal length and the number of elemental lens in the integral imaging pickup system. In this regard, we propose the parallel lens array system to enhance the available spatial filtering region and depth resolution. The experiment result indicate that the proposed method outperforms the conventional method.

Properties of resolution improvement for three-dimensional integral imaging using dynamic microlens array (동적 마이크로 렌즈 배열을 사용한 3차원 완전 결상에서의 해상도 개선 특성)

  • 조명진;김복수;장주석
    • Korean Journal of Optics and Photonics
    • /
    • v.15 no.2
    • /
    • pp.130-136
    • /
    • 2004
  • We investigate characteristics of viewing resolution improvement in three-dimensional integral imaging, when a dynamic lens array method is adopted. We show that the viewing resolution changes for different moving directions and distances of the lens array through computer-synthesized integral imaging. From this study, optimal moving conditions of the lens array for efficient viewing resolution improvement can be determined.

Symmetric Microwave Lens with Uniform Insertion Loss for Broad-band and Wide Beam Steering Coverage (균일한 삽입손실을 갖는 광대역 빔 조향용 대칭형 초고주파 렌즈)

  • 김인선;이광일;오승엽
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.13 no.3
    • /
    • pp.279-287
    • /
    • 2002
  • In this paper, a symmetric microwave lens to steer wide angle and to operate at broad band frequency range for a linear phased array transmitter was designed. To get accurate beam steering performance far a linear phased array transmitter, uniform amplitude transmission characteristics of microwave lens was focused. The measured result for the insertion loss deviation between Input and output ports of microstrip lens with 8 beam ports and 8 array ports was $\pm$3.1 ㏈ over 6~18 ㎓ band, which was very uniform characteristics. Using 8 elements linear array antenna, it was confirmed the radiation beam could be steered over $\pm$60$^{\circ}$ in azimuth. And the measured lens performance data and multi-beam steering pattern were presented.

The Fabrication of Microlens Array (초소형 렌즈 배열의 제작에 관한 연구)

  • Moon, Sung-Wook;Kim, Hee-Youn
    • Journal of Sensor Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.279-285
    • /
    • 2001
  • In this study, we fabricated the microlens array using very simple and economical method which used Si molds made by bulk etching in HNA and spreaded SU-8 on top of the Si mold. And, we developed fabrication conditions for high fill factor microlens array that is $45{\mu}m$ in height and $150{\mu}m$ in diameter. This microlens array can be used for imaging system like IR detector or projection display. It is expected that it can improve the characteristics of these devices.

  • PDF

멀티롤 랜턴의 LED 배열에 따른 배광특성 분석

  • Han, Ju-Seop;Kim, Jong-Uk;Yu, Yong-Su;Gang, Seong-Bok
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2013.10a
    • /
    • pp.395-397
    • /
    • 2013
  • 항로표지는 해상에서 선박의 안전한 항행에 필수적인 요소이며, 현재는 LED를 광원으로 사용하는 등명기를 개발 및 사용하고 있다. LED 멀티롤 랜턴을 개발하여 항로표지의 표체조명, 교량표지, 방파제 표시등 등으로 개발하고하는 연구가 진행되고 있다. 이를 위하여 LED 멀티롤 랜턴의 내부 LED 배치에 따른 배광특성을 분석하였다. 본 논문에서 멀티롤 랜턴은 아크릴 환봉과 설치를 위한 금속재로 구성하였으며, 내부에 LED를 2열로 배치하였다. 최적의 설계를 위하여 아크릴 환봉을 투명한 것과 유백색인 것으로 구분하고 2열의 LED 모듈에 집광렌즈($45^{\circ}$, $60^{\circ}$, 미설치)에 따른 배광특성을 분석하였다. $60^{\circ}$ 집광렌즈를 사용한 경우의 시인효과가 우수하여 이를 바탕으로 LED 멀티롤 랜턴을 최종적으로 설계하였다. 투명 아크릴 환봉에 2열의 LED를 배치하고, $60^{\circ}$ 집광렌즈를 사용한 평판형 및 v형의 2종과 집광렌즈를 사용하지 않은 v형 1종으로 선정하고, 녹색과 홍색으로 제작하여 LED의 배열에 따른 배광특성을 본석하였다.

  • PDF

A fast and accurate method of extracting lens array lattice in integral imaging (집적 영상에서 빠르고 정확한 렌즈 배열 격자 검출 방법)

  • Jeong, Hyeon-Ah;Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.21 no.9
    • /
    • pp.1711-1717
    • /
    • 2017
  • In this paper, we propose a fast and accurate method of extracting lens array lattice in integral imaging by using an appropriate calibration pattern image and fast median filtering. In order to extract the lattice of a lens array, vertical and horizontal edge images are required. To extract edge images, the well-known previous method used separable median filters. However, this method is slow and difficult to determine the median filter size. In order to overcome this problem, we try to improve speed by calculating median value through binary counting method. In addition, we propose a calibration pattern image that detects edges well and improves the accuracy. Experimental results indicate that the proposed method is superior to the existing method in extracting the lattice of a lens array in integral imaging.