DOI QR코드

DOI QR Code

Numerical Reconstruction of Two-dimensional Object from the Image Captured by a Random Lens Array

불규칙 렌즈 배열을 통과한 영상을 이용한 2차원 물체의 수치적 복원

  • Hong, Sung-In (School of Information and Communication Engineering, Chungbuk National University) ;
  • Kim, Nam (School of Information and Communication Engineering, Chungbuk National University) ;
  • Park, Jae-Hyeung (School of Information and Communication Engineering, Inha University)
  • 홍성인 (충북대학교 정보통신공학부) ;
  • 김남 (충북대학교 정보통신공학부) ;
  • 박재형 (인하대학교 정보통신공학부)
  • Received : 2013.04.17
  • Accepted : 2013.06.14
  • Published : 2013.06.25

Abstract

We propose a method to reconstruct the two-dimensional object from an image captured through an array of random lenses each of which has random shape, size, and focal power. In the proposed method, the characteristics of the random lens array are estimated by capturing images for known elementary inputs, and then the object is reconstructed by measuring correlations between the random lens images of the object and the elementary inputs. The experimental results show that the original object can be recognized by the proposed reconstruction method. Nevertheless, further quality enhancement is required to increase feasibility and to extend to general three-dimensional object cases.

본 논문에서는 임의의 모양, 크기, 및 초점 거리를 가지는 렌즈들의 불규칙한 배열을 통과하여 저장되는 영상으로부터 원본 2차원 객체의 모양을 복원하는 방법을 제시한다. 제안된 방법에서는 먼저 단일 물체점의 위치를 바꾸어가며 불규칙 렌즈 배열을 통한 촬영을 수행하여 각 물체점 위치에 대한 불규칙 렌즈 배열 영상들을 확보한다. 이와 같은 각 물체점별 불규칙 렌즈 배열 영상들을 임의의 모양을 가지는 2차원 물체에 대한 불규칙 렌즈 배열 영상과 비교하여 유사도를 산출함으로써 임의의 모양을 가지는 2차원 물체를 복원한다. 실험 결과를 통하여 원본 물체를 인식할 수 있는 수준으로 물체의 복원이 가능함을 확인하였다. 추후 보다 높은 해상도의 복원과 3차원 물체로의 확장을 위한 추가 연구가 필요함도 확인하였다.

Keywords

References

  1. Y. Choi, T. D. Yang, C. Fang-Yen, P. Kang, K. J. Lee, R. R. Dasari, M. S. Feld, and W. Choi, "Overcoming the diffraction limit using multiple light scattering in a highly disordered medium," Phys. Rev. Lett. 107, 023902 (2011). https://doi.org/10.1103/PhysRevLett.107.023902
  2. D. B. Conkey, A. M. Caravaca-Aguirre, and R. Piestun, "High-speed scattering medium characterization with application to focusing light through turbid media," Opt. Express 20, 1733-1740 (2012). https://doi.org/10.1364/OE.20.001733
  3. R. Ng, M. Levoy, M. Bredif, G. Duval, M. Horowitz, and P. Hanrahan, "Light field photography with a hand-held plenoptic camera," Stanford Technical Report CTSR 2005-02 (2005).
  4. J.-H. Park and K.-M. Jeong, "Frequency domain depth filtering of integral imaging," Opt. Express 19, 18729-18741 (2011). https://doi.org/10.1364/OE.19.018729
  5. J.-H. Park, K. Hong, and B. Lee, "Recent progresses in three-dimensional information processing based on integral imaging," Appl. Opt. 48, H77-94 (2009). https://doi.org/10.1364/AO.48.000H77
  6. J.-S. Jang and B. Javidi, "Large depth-of-focus timemultiplexed three-dimensional integral imaging by use of lenslets with nonuniform focal lengths and aperture sizes," Opt. Lett. 28,1924-1926 (2003). https://doi.org/10.1364/OL.28.001924
  7. M. M. Marim, M. Atlan, E. Angelini, and J.-C. Olivo-Marin, "Compressed sensing with off-axis frequency-shifting holography," Opt. Lett. 35, 871-873 (2010). https://doi.org/10.1364/OL.35.000871
  8. R. Fergus, A. Torralba, and W. T. Freeman, "Random lens imaging," MIT CSAIL Technical Report 2006-058 (2006).
  9. P. Peebles, Probability, Random Variables and Random Signal Principles, 4th ed. (McGraw-Hill, 2001), p. 145.