• Title/Summary/Keyword: 렌즈의 높이

Search Result 54, Processing Time 0.024 seconds

Linear Fresnel Lens Optimization for Middle Concentrated Photovoltaic (중집광형 태양광 집광장치 용 선형 프레넬 렌즈의 최적화설계연구)

  • Song, Je Heon;Yu, Jin Hee;Lee, Jun Ho;Jang, Won Keun;Lee, Dong Gil
    • Korean Journal of Optics and Photonics
    • /
    • v.24 no.5
    • /
    • pp.213-216
    • /
    • 2013
  • This paper presents a combination of linear Fresnel lenses optimized for ${\times}25$ solar concentration. The combined lens consists of $5{\times}5$ linear Fresnel lenses. Each Fresnel lens is of $10{\times}10$ mm and optimized to tilt the incoming light onto a solar cell of the same size. All of the optimized Fresnel segments have the same pattern height of 35 ${\mu}m$, draft angle of $4^{\circ}$, and edge groove round of 1 ${\mu}m$ but with different facet angles varying from $14.1^{\circ}$ to $31.2^{\circ}$. The solar concentrating efficiency of the combination is shown to be over 80% and more robust than a conventional single ${\times}25$ circular Fresnel lens in terms of pointing misalignment and manufacturing errors. A sensitivity analysis finds that the edge groove round should be kept as small as machining allows since the concentrating efficiency drops ~5% per 1 ${\mu}m$ increase of the edge groove.

Design of an Achromatic Optical System Using a Symmetry Graphical Method (대칭 그래픽 방식을 이용한 광학계의 색수차 보정 설계)

  • Lim, Tae-Yeon;Ahn, Byoung-In;Jo, Sun-Hyoung;Kim, Jeongyun;Park, Sung-Chan
    • Korean Journal of Optics and Photonics
    • /
    • v.29 no.1
    • /
    • pp.13-18
    • /
    • 2018
  • In this study, we present a symmetry graphical method to design an achromatic optical system composed of many lenses on an achromatic glass map. To take into account the lens spacing and the number of lenses, we use the relative ratio of paraxial ray height at each lens and the concept of an equivalent single lens. Converting an arbitrary optical system into various doublet systems, the most effective doublet is then selected to correct the color aberration, through material selection and the redistribution of the optical power. By designing a fisheye lens using this approach, an achromatic optical system is effectively obtained over the visible waveband.

Rectangular Microlens array for Multi Chip LED Packaing (LED 패키지를 위한 사각 형상의 마이크로 렌즈)

  • Lim C.H.;Jeung W.K.;Choi S.M.;Oh Y.S.
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2005.10a
    • /
    • pp.882-884
    • /
    • 2005
  • A new rectangular shape microlens array having high sag for solid-state lighting is presented. Proposed microlens, which has high sag, over $375{\mu}m$ and large diameter, over 3 mm can enormously enhance output optical extraction efficiency. Rectangular shape of microlens can maximize the fill factor of light-emitting-diode (LED) package and minimize the optical loss at the same time. This wafer level microlens array is fabricated on LED package. It has many advantages in optical properties, low cost, high aligning accuracy, and mass production.

  • PDF

Tunnel Mosaic Images Using Fisheye Lens Camera (어안렌즈 카메라를 이용한 터널 모자이크 영상 제작)

  • Kim, Gi-Hong;Song, Yeong-Sun;Kim, Baek-Seok
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.1
    • /
    • pp.105-111
    • /
    • 2009
  • A construction can be more convenient and safer with adequate informations. Consequently, studies on collecting various informations using newest surveying technology and applying these informations to a construction have been making progress recently. Digital images are easy to obtain and contain various informations. Therefore, with the recent development of image processing technology, the application field of digital images is getting wider. In this study, we proposed to use a fisheye lens camera in underground construction sites, especially tunnels, to overcome inconvenience in photographing with general lens cameras. A program for mapping the surface of a tunnel and making a mosaic image is also developed. This mosaic image can be applied to observe and analyze abnormal phenomenons on tunnel surface like cracks, water leakage, exfoliates, and so on.

  • PDF

Impact Resistance Testing of NK55 Ophthalmic Lenses in Domestic Market (국내 유통 NK55 재질 안경렌즈의 내충격 시험 평가)

  • Park, Mijung;Jeon, Inchul;Hwang, Kwang Hoon;Byun, Woongjin;Kim, So Ra
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.16 no.3
    • /
    • pp.229-235
    • /
    • 2011
  • Purpose: The present study was performed to evaluate the safety of ophthalmic lenses in domestic market since eyeglasses wearers could be exposed to the negligent accident by damaged ophthalmic lenses. Method: Totally, 160 ophthalmic lenses (NK55, ${n_{d}}$ = 1.56) with the refractive powers of -3D, -6D, +3D, +6D manufactured by 4 companies in domestic market were evaluated using drop ball test. In accordance with FDA standard, steel ball (~16 g) was freely dropped on these ophthalmic lenses from 127 cm high and the surfaces of lenses were observed. Results: From the study, center thicknesses of NK55 ophthalmic lenses manufactured by 4 different companies showed somewhat different numbers even though the lenses had the same refractive index and powers. All convex lenses of +3D, +6D were evaluated as the safe lenses since there was no damage such as crack and broken found on the lens surfaces after drop ball testing. However, some noticeable broken was shown on the surfaces of concave lenses with relatively thinner center thickness. Especially, 59(73.8%) of total 80 concave lenses with the refractive power of -3D and -6D classified as unacceptable lenses to FDA standard. Conclusions: From the results, the negligent accident by damaged ophthalmic lenses should be considered as well as the correction of visual acuity, design and price when customers purchase eyeglasses. Thus, the enforcement regulation like drop ball testing of uncut ophthalmic lens could be suggested to guarantee the safety of ophthalmic lenses in domestic market.

Generation of Lens surface by moving mask lithography (가변 속도 이동식 마스크를 이용한 렌즈 곡면 형성)

  • Lee Joon-Sub;Park Woo-Jae;Song Seok-Ho;Oh Cha-Hwan;Kim Pill-Soo
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.6
    • /
    • pp.508-515
    • /
    • 2005
  • We propose a fabrication method for refractive lens by variable velocity moving mask lithography and slit pattern. Distribution of exposure dose should be controlled for the curved photoresist surface that works as a refractive surface. We analyze theoretically the distribution of exposure dose by change of moving velocity, moving direction of mask and the shape of mask pattern, and confirm for the curved surface experimentally. The lens could have sag height of a few of hundreds ${\mu}m$, by using thick photoresist or Deep RIE process.

Tolerance Analysis Method of Camera Optics Using Floating System (플로팅 시스템이 적용된 카메라 광학계의 공차 분석)

  • Son, Hyun Jun;Ryu, Jae Myung;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.303-309
    • /
    • 2022
  • Since the pixel size of the image sensor used in optical systems is gradually decreasing, the resolution specification of the optical system should be inevitably higher. If aberration change according to the eccentricity of a specific lens group occurs, only the amount of eccentricity of a specific lens group may be calculated with the traditional resolution adjustment method so that the aberration of the optical system is minimized to a certain extent. As a result, it is possible to increase the resolution of the optical system and to respond to a sensor with a large number of pixels. However, in the traditional method, there should be no change in specific aberration due to the eccentricity of a specific lens group. In this paper, we propose a new method to eliminate such a limitation of the traditional method in a camera optical system with a floating system, which is to choose and control the arbitrary two lens groups to easily minimize the eccentricity of the optical system in order to obtain an optical system with high resolution.

Optimized Optical Design of LCD Color-matching BLU Using an RGB Light Source (RGB 광원을 사용한 고효율 LCD Color-matching BLU의 광학적 설계)

  • Jeon, Hwa Jun;Gwag, Jin Seok;Kwon, Jin Hyuk
    • Korean Journal of Optics and Photonics
    • /
    • v.30 no.3
    • /
    • pp.101-105
    • /
    • 2019
  • An LCD backlight unit (BLU) using RGB light sources is designed and simulated, in order to improve its optical energy efficiency. A color-matching BLU is designed with a lenticular lens array (LLA) with elements that image the linear RGB light sources onto the RGB subpixels of the color filter. Type-A and Type-B simulations are performed, according to the location of the light sources. As a result, the luminance increases to 210% in Type-A and 270% in Type-B respectively. The optimum values for the height and the gap of the LLA for maximum efficiency are found to be $25{\mu}m$ and $3{\mu}m$ respectively.

해외리포트: 이미지센서의 미세화와 그 응용

  • KANEKO, Takehiko
    • The Optical Journal
    • /
    • s.131
    • /
    • pp.37-41
    • /
    • 2011
  • 휴대전화에 카메라가 탑재된 지도 10년 이상이 지났다. 점차 고해상도화와 더불어 카메라로서 점점 실용적으로 진화하고 있다. 장기간 배터리 구동의 필요성에서 저소비전력은 중요과제이고, 종래의 CCD 이미지센서에서 CMOS센서로 거의 대체되었다고 할 수 있다. 기기의 소형화에 동반해 탑재되는 카메라모듈의 소형화에 대한 요구는 매우 강하다. 특히 박형화된 표시부와 함께 실장되는 inside 카메라의 저배화(低背化)는 급속히 진행됐다. 모듈의 높이를 낮게 하기 위해서는 광학렌즈의 광로장을 적게 하는 것이 요구되지만 고해상도 때문에 이미 지사이즈가 대형화하는 경향과 상반된다. 본고는 광기술컨텍트 2010년 10월호에서 발췌한 것으로서 이미지사이즈를 유지하면서 고해상도화를 실현하는 미세 셀에서 성능을 확보하는 기술과 카메라모듈을 소형화하는 기술에 대해서 개괄하였다.

  • PDF

A Study on Improvement Technology of Image Resolution using Mobile Camera (이동 카메라를 이용한 사진 해상도 향상 기술 연구)

  • Buri Kim;Jongtaek Oh
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.93-98
    • /
    • 2023
  • Recently, as the size of display devices tends to increase and taking pictures with smart phones has become commonplace, the need for taking high-resolution pictures with smart phones is increasing. However, when the lens size of a camera is limited, such as in a smartphone, there is a physical limit to increasing the resolution of a photo. This paper is about a technique for increasing the resolution of a picture even when using a small-sized lens like a smartphone camera. It is to take multiple pictures while moving the smartphone, and to increase the resolution by combining these pictures into one picture. First of all, two pictures were taken while moving the smartphone horizontally for the 2D picture. Processes such as camera matrix estimation, and homograph inverse transformation were performed using OpenCV, and the resolution was improved by synthesizing one picture. It was confirmed that the resolution was improved in parts such as oblique lines or arcs on several test pictures.