• Title/Summary/Keyword: 렌즈설계

Search Result 593, Processing Time 0.036 seconds

Development on a Relay Lens Type Scope with 70 mm Eye Relief (70 mm Eye Relief를 갖는 릴레이 렌즈 방식 스코프 개발)

  • Park, Seung-Hwan;Lee, Dong-Hee
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.14 no.3
    • /
    • pp.29-35
    • /
    • 2009
  • Purpose: To develop a relay lens type scope with 70 mm eye relief. Methods: By using Sigma 2000 design program, we designed and manufactured a relay lens type scope with 70 mm eye relief, which is integrated after designing an objective part with relay lenses and an eyepiece part, respectively. Results: The characteristics of the relay lens type scope with 70 mm eye relief whch is designed and manufactured by methods, which integrate after respectively designing an object part with relay lenses and an eyepiece part, have the magnification of $+4{\times}$,the length from 1st lens to last lens of about 105 mm, the barrel diameter of 18mm, and the effective diameter of 13 mm. Also we know that the resolution line width is 275 cycles/rad at the 30% MTF value criterion. Conclusions: We could design and manufacture the relay type scope with 70 mm eye relief, the characteristics of which have the magnification of $+4.0{\times}$the MTF above 30% at 275 cycles/rad, and the length from 1st lens to last lens of about 105 mm.

  • PDF

Optical system design using lens modules I:optimum first order design in zoom lens (렌즈모듈을 이용한 광학계 설계 I: 줌렌즈의 First Order 최적설계)

  • 박성찬;김영식
    • Korean Journal of Optics and Photonics
    • /
    • v.8 no.2
    • /
    • pp.81-87
    • /
    • 1997
  • This paper presents the optimum initial design containing the first and third order properties of the four-group video camera zoom system using lens modules, and its real lens design. The optimum initial design with focal length range of 6.1693 to 58.4065 mm is derived by assigning appropriate first order quantities and third order aberrations to each module along with the specific constraints required for optimization. By scaling the focal length of each lens group, an initial real lens selected for each group has been designed to match its focal length into that of the each lens module, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system consisting of original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in video zoom camera employing the rear focus method.

  • PDF

Design of High-resolution Wide-angle Lenz Module, and Image Distortion Compensation for Smart NUX (스마트 NUX용 고해상도 광각렌즈모듈 및 영상왜곡보정 설계)

  • Lee, Jae-Gon;Kang, Min-Goo;Kim, Won-Kyu;Lee, Kyung-Taek
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.7 no.5
    • /
    • pp.999-1004
    • /
    • 2012
  • In this paper, camera modules and lens's images were analyzed for the compensation of distortion image by wide angle lens based WDR(Wide Dynamic Range) with high resolution sensor(2-Mega CMOS Image sensor). Due to wide angle ($176^{\circ}$) of designed wide angle camera modules, the compensation result of distorted image was analyzed, and the application of these modules was proposed for smart NUX(Natural User eXprience).

Curvature Radius of Equivalent Lens Obtained by Recursive Numerical Solving of Gaussian Equations (재귀적 수치 계산법을 이용한 등가 렌즈의 곡률 계산)

  • Lee, Kyu Haeng
    • Korean Journal of Optics and Photonics
    • /
    • v.33 no.6
    • /
    • pp.275-286
    • /
    • 2022
  • As a first step in the optical design process, we derive a recursive numerical calculation method that can give a solution to the Gaussian equation that the paraxial rays satisfy. Given the refractive power, the angle of incidence to the first principal plane of the lens, the angle of exit to the second principal plane of the lens, and the distance between the principal planes, the radii of curvature of the front and back surfaces of a lens can be obtained by applying the recursive numerical calculation method proposed in this paper according to the thickness of the lens. If a module consists of two or more lenses, the thickness and radius of curvature of each lens can be similarly determined after selecting the distance between the principal planes of the lens under the condition of the design specification while increasing the number of lenses one by one.

Ultra-Compact Zoom Lens Design for Phone Camera Using Hybrid Lens System (복합렌즈계를 이용한 폰 카메라용 초소형 줌렌즈 설계)

  • Park, Sung-Chan;You, Byoung-Taek
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.5
    • /
    • pp.349-359
    • /
    • 2008
  • For an inner-focusing 3-groups zoom lens system, this study suggests a new initial design method which applies the process that changes thin lenses into thick ones effectively and quickly, using the hybrid lens system(thin lens+thick lens). In other words, the hybrid lens system is the semi-automatic design process that makes the thin lens of one group change into a thick one while the other groups are composed of thin lenses. Keeping the total power of the system fixed, the power of each group and the distance between principal planes can be fixed. Of course, the other groups composed of thin lenses could be changed into thick lenses sequentially by this process. This design conception results in the 1/4" 5 M inner-focusing 3-groups 2x zoom lens system satisfying the specifications and performances of zoom lens for phone cameras. Also aspherization on lens elements of glass and plastic material enhanced the resolution and reduced the lens size. As a result, we have an ultra-compact inner-focusing 3-groups 2x zoom lens system for a phone camera, with a slim size with TTL of 9.8 mm.

Design and Performance of a Catadioptric Omnidirectional Zoom Optical System Using a Hybrid Lens for Visible Light (가시광에서 하이브리드 렌즈를 사용한 반사굴절식 전방위 줌 광학계의 설계 및 성능평가)

  • Park, Hyun Sik;Jo, Jae Heung
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.2
    • /
    • pp.96-104
    • /
    • 2020
  • A catadioptric omnidirectional zoom optical system using a hybrid lens (COZOSH) that performs simultaneously two functions of a lens and a mirror was designed at the visible wavelength range for daytime unmanned surveillance, and its performance was analyzed. The hybrid lens has lots of advantages in terms of fabrication and assembly of a COZOSH, because of the obviation of a lens boring process and reduction of the number of optical components. Additionally, we designed the COZOSH to expand the compressed inner-image region of a donut image at low spatial frequencies. As a result, the optimized design performance of the optical system that satisfies all initial design specifications was obtained from calculation of the modulation transfer function, spot diagram, and tolerance analysis. We confirmed that the COZOSH is a passively athermalized optical system under conditions of temperature variation from -30℃ to 50℃, by using athermalization analysis during zooming.

Design and fabrication of a zoom optics having 20 magnification range for mid-IR(3.7-4.8$\mu$m) FLIR system (3.7-4.8$\mu$m 파장대역 FLIR 시스템을 위한 20:1 줌 렌즈 광학계 설계 및 제작)

  • 김현숙;김창우;홍석민
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.462-467
    • /
    • 1999
  • This paper describes the design and fabrication of mid-IR $(3.7-4.8{\mu}m)$ zoom optics which is used for FUR (Forward Looking Infra-Red) system with 320 $\times$ 240 focal plane arrays. The zoom optics has 20 magnification range and maximun 40$^{\circ}$$\times$30$^{\circ}$ of super wide field of view. The locus of zoom is almost linear, which gives easy access of mechanical and electro-mechanical design. The on-axis MTF of zoom optics has been measured and it shows diffraction limited optical performance. For example, it gives 0.692 at 24 cycles/mm at highest magnification, and 7.6 cycles/mradof resolving power is achieved with the operation of attached micro-scanning system.system.

  • PDF

Zoom lens design for compact digital camera using lens modules (렌즈모듈을 이용한 컴팩트 디지털 카메라용 줌 렌즈 설계)

  • Park, Sung-Chan;Lee, Sang-Hun
    • Korean Journal of Optics and Photonics
    • /
    • v.16 no.1
    • /
    • pp.34-42
    • /
    • 2005
  • This paper presents the optimum initial design containing the first and third order properties of the three-group zoom system using lens modules, and the real lens design of the system. The optimum initial design with focal length range of 4.3 mm to 8.6 mm is derived by assigning appropriate first and third order quantities to each module along with the specific constraints required for the system. An initial real lens selected for each group has been designed to match its focal length and the first orders into those of the each lens modules, and then combined to establish an actual zoom system by adjusting the air space between the groups at all zoom positions. The combination of the separately designed groups results in a system which satisfies the first order properties of the zoom system composed of the original lens modules. As a result, by residual aberration correction, we could obtain a zoom system useful in compact digital zoom cameras and mobile phone cameras employing the rear focus method.

Design and Characteristics of 6-60 Lens for CCTV (CCTV용 6-60 렌즈의 설계 및 특성)

  • Han, Doo-Hee
    • Journal of Convergence Society for SMB
    • /
    • v.6 no.3
    • /
    • pp.85-91
    • /
    • 2016
  • It was difficult to verify the car number or face of inspector in the closed circuit television because of low CCD pixels and low brightness of lens. So CCTV lens should have higher pixels and brightness. In this paper, the design of zoom lens for mega pixel Closed-Circuit Television (CCTV) was introduced. We applied aspheric lens in order to reduce the spherical aberration and distortional aberration. And we applied focal length of 6-60mm, F number of 1.2, 3 million pixel resolution and magnifying power of 10 times. Also we applied infrared correction in order to use the CCTV camera in day and night effectively. These norms are the most powerful in CCTV zoom lens of focal length of 6-60mm. And if we apply this lens to the box style CCTV camera, we can verify the car number or face within 50m. Auto controlling system will be continued.

Design of a Rod-Type Aspheric Lens Collimator for Optical Telecommunication (막대 형태의 비구면 렌즈를 이용한 광통신용 시준기의 설계)

  • Kang, Seok-Bong;Kang, Eun-Kyoung;HwangBo, Chang-Kwon;Kang, Sang-Do;Kim, Jong-Sup
    • Korean Journal of Optics and Photonics
    • /
    • v.19 no.1
    • /
    • pp.31-35
    • /
    • 2008
  • A rod-type aspheric lens collimator for the optical telecommunication system which shows high coupling efficiency and experiences small coupling loss for misalignment errors is designed. The working distance, thickness, and diameter of the rod-type aspheric lens are determined to be close to those of the GRIN lens collimator in order to replace the GRIN lens with the rod-type aspheric lens. Since the coupling loss mainly originated from the spherical aberration of the lens, the spherical aberration in the rod-type aspheric lens is reduced drastically, and it turns out that the coupling efficiency of the rod-type aspheric lens collimator is higher than that of the available collimators, such as ball lens, GRIN lens, and C-type lens collimators.