• Title/Summary/Keyword: 레이저 유도 플라즈마 분광분석법

Search Result 23, Processing Time 0.03 seconds

Forensic Classification of Latent Fingerprints Applying Laser-induced Plasma Spectroscopy Combined with Chemometric Methods (케모메트릭 방법과 결합된 레이저 유도 플라즈마 분광법을 적용한 유류 지문의 법의학적 분류 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Korean Journal of Optics and Photonics
    • /
    • v.31 no.3
    • /
    • pp.125-133
    • /
    • 2020
  • An innovative method for separating overlapping latent fingerprints, using laser-induced plasma spectroscopy (LIPS) combined with multivariate analysis, is reported in the current study. LIPS provides the capabilities of real-time analysis and high-speed scanning, as well as data regarding the chemical components of overlapping fingerprints. These spectra provide valuable chemical information for the forensic classification and reconstruction of overlapping latent fingerprints, by applying appropriate multivariate analysis. This study utilizes principal-component analysis (PCA) and partial-least-squares (PLS) techniques for the basis classification of four types of fingerprints from the LIPS spectra. The proposed method is successfully demonstrated through a classification example of four distinct latent fingerprints, using discrimination such as soft independent modeling of class analogy (SIMCA) and partial-least-squares discriminant analysis (PLS-DA). This demonstration develops an accuracy of more than 85% and is proven to be sufficiently robust. In addition, by laser-scanning analysis at a spatial interval of 125 ㎛, the overlapping fingerprints were separated as two-dimensional forms.

Precision exploration of space resources using laser-induced breakdown spectroscopy (레이저 유도 플라즈마 분광분석법을 활용한 정밀 우주 자원 탐사)

  • Choi, Soo-Jin;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.39 no.5
    • /
    • pp.451-457
    • /
    • 2011
  • A short laser pulse irradiates a sample to create the highly energetic plasma that emits light of a specific wavelength peak according to the material. By identifying different peaks for the analyzed samples, its chemical composition can be rapidly determined. The LIBS (Laser-Induced Breakdown Spectroscopy) has great advantages as an elemental analyzer on board a space rover, namely real-time rapid analysis and stand-off detection. The LIBS signal intensity is remarkably increased by using double-pulse LIBS system for component analysis of lunar environments where the surrounding pressure is low. Also the angle of target is adjusted for replicating arbitrary shapes of the specimen.

Qualitative and Quantitative Analysis of Space Minerals using Laser-Induced Breakdown Spectroscopy and Raman Spectroscopy (레이저 유도 분해 분광법과 라만 분광법을 이용한 우주 광물의 정성 및 정량 분석 기법)

  • Kim, Dongyoung;Yoh, Jack J.
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.6
    • /
    • pp.519-526
    • /
    • 2018
  • In order to analyze space resources, it had to be brought to earth. However, using laser-induced breakdown spectroscopy(LIBS) and Raman spectroscopy, it is possible to analyze qualitative and quantitative analysis of space minerals in real time. LIBS is a spectroscopic method in which a high energy laser is concentrated on a material surface to generate a plasma, and the emitted light is acquired through a spectroscope to analyze the atomic composition. Raman spectroscopy is a spectroscopic method that analyzes the molecular structure by measuring scattered light. These two spectroscopic methods are complementary spectroscopic methods for analyzing the atoms and molecules of unknown minerals and have an advantage as space payloads. In this study, data were analyzed qualitatively by using principal component analysis(PCA). In addition, a mixture of two minerals was prepared and a quantitative analysis was performed to predict the concentration of the material.

Spark-induced Breakdown Spectroscopy System of Bulk Minerals Aimed at Planetary Analysis (스파크 유도 플라즈마 분광 시스템을 이용한 우주탐사용 암석 분석연구)

  • Jung, Jaehun;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.48 no.12
    • /
    • pp.1013-1020
    • /
    • 2020
  • Spark-induced breakdown spectroscopy (SIBS) utilizes an electric spark to induce a strong plasma for collecting atomic emissions. This study analyses the potential for usinga compact SIBS instead of conventional laser-induced breakdown spectroscopy (LIBS) in discriminating rocks and soils for planetary missions. Targeting bulky solids using SIBS has not been successful in the past, and therefore a series of optimizations of electrode positioning and electrode materials were performed in this work. The limit of detection (LOD) was enhanced up to four times compared to when LIBS was used, showing a change from 78 to 20 ppm from LIBS to SIBS. Because of the higher energy of plasma generated, the signal intensity by SIBS was higher than LIBS in three orders of magnitude with the same spectrometer setup. Changing the electrode material and locating the optimum position of the electrodes were considered for optimizing the current SIBS setup being tested for samples of planetary origin.

The Study of Two-dimensional Chemical Distribution about Soil using Laser Spectroscopy (레이저 분광법을 활용한 토양 2차원 화학적 분포도 검출 연구)

  • Yang, Jun-Ho;Yoh, Jai-Ick
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.6
    • /
    • pp.523-530
    • /
    • 2017
  • Laser-Induced Breakdown Spectroscopy (LIBS) which a plasma is irradiated at a specific wavelength depending on the material when a high-energy laser is irradiated, and a Raman spectroscopy which measures rotation and vibration in molecules as light-scattering phenomenon occurs, are attracting attention as a space exploration technology because of the advantages of high accuracy and real-time analysis, and the ability to perform long-range detection. In this study, the tendency of the laser spectrum according to the change of the soil component was analyzed by laser spectroscopy and the two - dimensional chemical distribution was conducted based on the trend of laser spectrum. We have also established the environment of Mars (4-7 torr) and lunar atmosphere (<1 torr) in experimental setup, to prove that it is possible to measure by difference of soil chemical composition using LIBS and Raman spectroscopy even in artificial space environment.

Measurement of combustion gas temperature using laser-induced breakdown spectroscopy (레이저 유도 플라즈마 분광분석법을 이용한 연소 가스 온도 측정 기술)

  • Lee, Seok Hwan;Kim, Yong-Gyoo;Kang, Woong;Joung, Wukchul;Lee, Joo Hyun;Kim, Sunghun;Yang, Inyoung
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.285-289
    • /
    • 2017
  • Laser-induced breakdown spesctroscopy (LIBS) is a technique that complements the disadvantages of conventional laser-based combustion diagnosis techniques such as weak signal strength, complex equipment configuration, and low accuracy. In this study, basic research was carried out to measure the combustion gas temperature of scramjet engines using LIBS. Spray flames were generated from Jet A-1 fuel used in scramjet engines and gas temperatures were measured at the top of the flames with a calibrated thermocouple. The LIBS signals were acquired at the same points as the temperature measurement positions of the thermocouple. The LIBS spectra were analyzed to obtained a calibration curve between the LIBS signal and the reference temperature measured at the thermocouple. Therefore, it was confirmed that the combustion gas temperature can be measured in-situ using LIBS.

  • PDF

A Study on the Corrosion Characteristics of a Metal Surface by Laser-Induced Breakdown Spectroscopy (레이저 유도 플라즈마 분광분석법을 적용한 금속표면의 부식 특성에 관한 연구)

  • Kang, Dongchan;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.16 no.1
    • /
    • pp.83-89
    • /
    • 2017
  • The corrosion of metal specimens was analyzed in this study using laser-induced breakdown spectroscopy. The samples used in the study were magnesium alloys and corrosion, and standard specimens were prepared and analyzed using surface and depth analysis. The spectral wavelengths used in the oxide layer analysis were 777.196 nm, 777.421 nm, and 777.543 nm. The spectral line of the surface corrosion was confirmed by experimentation, and surface micro morphology analysis was performed using an optical microscope. Approximately $100{\mu}m$ corrosion depth was confirmed via laser irradiation in the depth direction. The results of laser-induced breakdown spectroscopy and the SEM-EDS analysis were compared and analyzed.

Laser-Induced Plasma Spectroscopy Measurement on Surface Roughness in Surface Treatment of Titanium Alloys (티타늄 합금의 표면 처리에 있어 표면 거칠기에 대한 레이저 유도 플라즈마 분광분석법 측정 적용 연구)

  • Kim, Ji-Hun;Kim, Joohan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.2
    • /
    • pp.9-17
    • /
    • 2020
  • In this study, the surface changes of titanium alloy using laser surface treatment and the surface analysis using laser-induced plasma spectroscopy were carried out. The laser surface treatment induced changes in surface roughness and the diffusion of atmospheric elements. Excessive melting or less melting caused roughness changes, but when moderate levels of energy were applied, a smoother surface could be obtained than the initial surface. In the process, the diffusion of atmospheric elements took place. To analyze the diffusion of atmospheric elements with respect to surface morphology, the surfaces were re-shaped with grinding. In this experimental conditions, the effect of plasma formation by surface roughness was identified. Compensated plasma signals for the material properties were obtained and analysed by removing the background plasma signal.

반도체 공정 플라즈마의 밀도 균일성 분석을 위한 공간 분해 발광 분광기

  • O, Chang-Hun;Ryu, Hun-Cheol;Lee, Hyeong-U;Kim, Se-Yeon;Lee, Heon-Jeong;Han, Jae-Won
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.02a
    • /
    • pp.412-412
    • /
    • 2010
  • 플라즈마는 미세 전기 소자 제작에 있어 박막의 증착, 식각, 세정등 여러 가지 공정에서 널리 사용되고 있다. 미세 소자의 선폭의 감소와 높은 생산성을 위한 웨이퍼 면적의 대형화가 진행됨에 따라 플라즈마의 균일도는 공정 수율 향상의 관점에서 중요한 요소로 그것의 계측과 공정 중 실시간 감시에 필요성이 부각되고 있다. 플라즈마에 존재하는 라디칼의 밀도, 이온의 밀도, 전자 온도 등의 웨이퍼 상에서의 공간 분포와 공정 결과물과의 상관관계에 대한 연구는 현재까지 다양하게 진행 되었으며 특히, 라디칼의 공간 분포가 공정 결과물의 균일도와 큰 상관 관계가 있는 것으로 알려져 있다. 라디칼의 농도 분포를 계측은 레이저 유도 형광법, 발광 분광법, 흡수 분광법 등을 통하여 이루어져 왔으며, 특히 발광 분광법의 경우 계측의 민감성, 편의성등을 이유로 가장 널리 사용되고 있다. 그러나 현재 까지 진행된 발광 분광법을 이용한 라디칼의 공간 분포 계측은 그 자체로 공간 분포를 계측하는 것이 아닌 플라즈마 밀도의 축 대칭성을 가정하여 Abel inversion을 적용하거나, 광섬유를 플라즈마에 직접 삽입하는 방식을 사용하기 때문에 실제 반도체 제작공정을 비롯한 미세소자 공정 플라즈마의 라디칼 밀도 분포를 실시간, 비 접촉 방식으로 계측 하는데 한계가 있다. 본 연구에서는 반도체 공정 플라즈마의 밀도 균일성 분석을 위한 공간 분해 발광 분광기를 제안한다. 기존의 발광 분광법과 비교하여 공간 분해능 향상을 위하여 직렬로 설치된 다수의 렌즈, 개구, 그리고 핀홀을 이용하였다. 공간 분해 발광 분광기의 공간 분해능을 계산하였으며, 실험을 통하여 검증 하였다. 또, HDP CVD를 이용한 $SiO_2$ 박막 증착 공정에서 산소 라디칼의 농도와 증착된 박막의 두께 분포의 상관 관계를 계측 함으로써 공간 분해 발광 분광기의 플라즈마 공정 적용 가능성 입증 하였다.

  • PDF