• 제목/요약/키워드: 레이저트래커

검색결과 6건 처리시간 0.015초

레이저트래커(Laser Tracker)를 이용한 대형 광학 거울의 형상 측정 (Measurement of Large Mirror Surface using a Laser Tracker)

  • 조은하;양호순;이윤우
    • 한국광학회지
    • /
    • 제24권6호
    • /
    • pp.331-337
    • /
    • 2013
  • 대형 광학 거울은 연삭, 연마, 최종연마의 단계를 거쳐 가공된다. 이 가운데 가장 진행이 빠르고 가공량이 많은 연삭 단계에서 정밀하고 신속한 측정이 가능하다면 가공 공정의 효율성을 높일 수 있다. 그런데 연삭 단계의 광학면은 거칠고 광택이 없기 때문에 빛을 이용한 측정이 매우 어렵다. 따라서 간섭계를 사용할 수 없으며 기계적인 방법을 이용하여 면을 측정해야 한다. 레이저트래커는 이동이 가능한 3차원 좌표 측정기로, 이를 이용한 측정 방법이나 데이터 분석을 연구하면 연삭 단계의 광학 거울을 정밀하게 측정할 수 있다. 본 논문에서는 레이저트래커를 이용하여 직경 1 m의 구면 거울의 형상오차를 측정하고, 이 측정 결과를 간섭계로 측정한 것과 비교하였다. 레이저트래커를 이용한 측정법은 형상오차 rms $0.2{\mu}m$, PV $2.7{\mu}m$의 측정 결과를 얻는 것으로 파악되어 연삭 단계 광학면의 정밀한 측정이 가능할 것으로 보인다.

헬리콥터 항법을 위한 증강현실 인터페이스 설계 (A Design of Augmented Reality Interface for Helicopter Navigation)

  • 이헌주;변기종;박찬용;김주완;장병태
    • 한국감성과학회:학술대회논문집
    • /
    • 한국감성과학회 2000년도 추계학술대회 논문집
    • /
    • pp.217-221
    • /
    • 2000
  • 증강현실은 사용자가 보고 있는 실세계의 영상과 컴퓨터가 생성한 가상의 영상을 실시간으로 합성하여 제시해주는 기술로 사용자에게 실세계에 대한 이해 및 현실감을 높여 줄 수 있는 기술이다. 본 논문에서는 이러한 기술을 이용하여 조종사에게 항법관련 정보를 제공해줄 수 있는 헬리콥터 항법용 증강현실 인터페이스를 설계하는 것을 목적으로 한다. 증강현실 인터페이스는 위치 측위를 위한 GPS/INS 기술과 통합되어 조종사에게 실시간으로 항법관련 정보를 제공해줄 수 있도록 한다. 제안된 시스템에서는 조종사의 주시방향을 보다 정확하게 추출하기 위하여 레이저 방식의 트래커를 이용하며, 투시형 HMD(Head-mounted Display)를 이용하여 합성된 영상을 조종사에게 실시간으로 제공하도록 한다.

  • PDF

레이저 트래커를 이용한 소형 공작기계의 서보 불일치 추정 (Servo Mismatch Estimation of Miniaturized Machine Tools Using Laser Tracker)

  • 이훈희;권성환;손진관;양승한
    • 한국정밀공학회지
    • /
    • 제33권8호
    • /
    • pp.683-689
    • /
    • 2016
  • Servo mismatch, which affects positioning accuracy of multi-axis machine tools, is usually estimated via the circular test. However, due to mechanical restrictions in measuring instruments, the circular test using a double ball-bar is difficult to apply in miniaturized or super-large sized machine tools. Laser trackers are widely used to measure the form accuracy of parts and the positioning accuracy of driving systems. In this paper, a technique for the servo mismatch estimation of multi-axis machine tools is proposed via the circular test using a laser tracker. To verify the proposed technique, experiments using a double ball-bar and laser tracker are conducted in a 3-axis machine tool. The difference in the evaluation results is 0.05 msec. The servo mismatch for the miniaturized machine tool is also evaluated using the proposed technique.

레이저 트래커를 이용한 Delta 병렬로봇의 기구학적 보정 (Kinematic Calibration of Delta Parallel Robot Using Laser Tracker)

  • 정성훈;최준우;김한성
    • 한국산업융합학회 논문집
    • /
    • 제24권6_2호
    • /
    • pp.947-952
    • /
    • 2021
  • In this paper, the simplified kinematic error model for Delta parallel robot is presented, which can enable the analytical forward kinematics essentially for kinematic calibration calculations instead of the numerical one. The simplified kinematic error model is proposed and the forward kinematics including the error parameters is analytically derived. The kinematic calibration algorithm of the Delta parallel robot with 90 degree arrangement using laser tracker and the experiment result are presented.

위성의 처짐 측정 및 보상에 관한 연구 (A Study on The Measurement and Compensation of Satellite Deflection)

  • 문홍열;김진희;우성현;조창래
    • 항공우주산업기술동향
    • /
    • 제8권2호
    • /
    • pp.39-45
    • /
    • 2010
  • 질량이 크고 정밀한 정렬이 요구되는 전개형 영상 레이더를 장착하기 위해서는 일반적으로 위성을 수평상태로 놓고 조립을 수행하게 된다. 이는 전개형 안테나의 회전축을 중력축과 일치시키고 전개형 안테나를 중력방향과 반대로 질량을 보상함으로써 무중력 상태를 만들어 회전축에 무리한 힘을 가하지 않기 위함이다. 이러한 전개형 영상 레이더를 장착하기 위해서는 위성이 수평 상태로 놓이더라도 위성체 처짐이 없는 수직상태와 동일한 형상을 만들어 주어야 한다. 처짐이 발생한 위성체에 안테나를 장착하고 수직상태로 변경하면 처짐이 발생한 부분이 강제적으로 원상복귀하려는 힘으로 인해 안테나 정렬이 틀어질 수 있기 때문이다. 본 논문에서는 수평상태에서 위성의 처짐값을 확인하기 위한 방안을 찾고 처짐 보상을 위한 Reaction Force 값을 어떻게 구할 것인지를 보여주고 있다.

  • PDF

오프라인 프로그래밍을 위한 3차원 레이저 스캐닝 시스템 기반의 로봇 캘리브레이션 방법 개발 (Development of robot calibration method based on 3D laser scanning system for Off-Line Programming)

  • 김현수
    • 한국산학기술학회논문지
    • /
    • 제20권3호
    • /
    • pp.16-22
    • /
    • 2019
  • 로봇을 적용한 자동화 생산 라인에서 로봇 셋업 시 시뮬레이션을 통한 Off-Line Programming(OLP)과 로봇 캘리브레이션은 작업 시간을 단축하고 양산 전부터 생산 품질을 관리하기 위해 필수적이다. 본 연구에서는 상용 3D 스캐너를 사용하여 생산 라인의 CAD 데이터와 현장의 3차원 측정 스캔 데이터를 정합하는 로봇 캘리브레이션 방법을 개발하였다. 제안한 방법은 Iterative Closest Point(ICP) 알고리즘을 통해 두 개의 3차원 점군 데이터를 정합하여 로봇을 교정한다. 정합은 3단계로 수행한다. 먼저 CAD 데이터로부터 3개의 평면으로 연결된 꼭짓점을 특징점으로 추출한다. 추출한 특징점 주변에 위치한 스캔 점군데이터로부터 평면을 재구성하여 대응하는 특징점을 생성한다. 마지막으로 ICP 알고리즘을 통해 추출한 특징점들 간의 거리를 최소화하여 위치 변환 행렬을 계산한다. 자동차 차체 조립라인의 스팟용접 로봇 설치에 제안한 방법을 적용한 결과 스팟용접에서 일반적으로 요구하는 정밀도 1.5mm 수준으로 로봇의 위치 및 자세를 캘리브레이션 할 수 있었으며, 기존에 레이저 트래커를 사용하면 로봇 한 대당 5시간 이상 소요되던 셋업 시간은 40분 이내로 단축할 수 있었다. 개발한 시스템을 사용하면 차체 스팟 용접에 필요한 정밀도를 유지하면서 자동차 차체 조립 라인의 OLP 작업시간을 단축하여, 로봇 정밀 티칭 시간을 단축하여, 생산제품의 품질 향상 및 불량률을 최소화할 수 있다.