• Title/Summary/Keyword: 레이저영상

Search Result 419, Processing Time 0.023 seconds

Hit Rate Prediction Algorithm for Laser Guided Bombs Using Image Processing (영상처리 기술을 활용한 레이저 유도폭탄 명중률 예측 알고리즘)

  • Ahn, Younghwan;Lee, Sanghoon
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.3
    • /
    • pp.247-256
    • /
    • 2015
  • Since the Gulf War, air power has played a key role. However, the effect of high-tech weapons, such as laser-guided bombs and electronic optical equipment, drops significantly if they do not match the weather conditions. So, aircraft that are assigned to carry laser-guided bombs must replace these munitions during bad weather conditions. But, there are no objective criteria for when weapons should be replaced. Therefore, in this paper, we propose an algorithm to predict the hit rate of laser-guided bombs using cloud image processing. In order to verify the accuracy of the algorithm, we applied the weather conditions that may affect laser-guided bombs to simulated flight equipment and executed simulated weapon release, then collected and analyzed data. Cloud images appropriate to the weather conditions were developed, and applied to the algorithm. We confirmed that the algorithm can accurately predict the hit rate of laser-guided bombs in most weather conditions.

Full Color image generation using binary phase holograms (이진 위상 홀로그램을 이용한 칼라 영상의 구현)

  • 서호형
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.4
    • /
    • pp.323-327
    • /
    • 1999
  • In this paper, the novel and simple scheme of producing full color image bye use of binary phase holograms and three lasers of red (632.8 nm), green (543.5 nm), and blue (488 nm) is presented. Three holograms are designed and fabricated separately so that different laser beams can pass through the different holograms. The diffracted beams from the holograms constitute the wanted color image at the focal plane. The theory and experimental results of the system are also presented.

  • PDF

Image Processing Technique for Laser Beam Recognition in Shooting Simulation System (모의 사격 시스템에서 레이저 빔 인식을 위한 영상처리 기법)

  • Oh, Se-Chang;Han, Dong-Il
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.3
    • /
    • pp.594-601
    • /
    • 2009
  • Shooting simulation systems not only reduce a great amount of expense and time for military exercises but also prevent accidents. In particular, the shooting simulation systems using laser beam have an advantage which is very similar to the shooting exercise that uses real bullets. However, real time technique for laser beam recognition in a target image is necessary. The method proposed in this paper takes a difference image from two adjacent image frames. Then a thresholding is applied on this difference image to discriminate laser beam from background. To decide the threshold value the intensity distribution of background points is modeled assuming normal distribution. Then a noise reduction and a region segmentation are applied on the binary image to find the position of a laser beam. The time complexity of this process depends on the size of an image multiplied by the size of a mask used in the noise reduction process. The experimental result showed that the accuracy of the system was 93.3%. Even in the inaccurate cases the beam was always found in the resultant region.

Measurement of a Phase Plate Simulates Atmospheric Turbulence Depending on Laser Power (레이저 출력에 따른 난류 모사 위상판 측정)

  • Han-Gyol Oh;Pilseong Kang;Jaehyun Lee;Hyug-Gyo Rhee;Young-Sik Ghim
    • Korean Journal of Optics and Photonics
    • /
    • v.34 no.3
    • /
    • pp.99-105
    • /
    • 2023
  • The performance of astronomical telescopes can be negatively affected by atmospheric turbulence. To address this issue, techniques for atmospheric turbulence correction have been developed, requiring the simulation of atmospheric turbulence in the laboratory. The most practical way to simulate atmospheric turbulence is to use a phase plate. When measuring a phase plate that simulates strong turbulence, a Shack-Hartmann wave-front sensor is commonly used. However, the laser power decreases as it passes through the phase plate, potentially leading to a weak laser signal at the sensor. This paper investigates the need to control the laser power when measuring a phase plate that simulates strong atmospheric turbulence, and examines the effects of the laser power on the measured wavefront. For phase plates with relatively high Fried parameter r0, the laser power causes a variation of over 10% in r0. For phase plates with relatively low r0, the laser power causes a variation of less than 5%, which means that the influence of the laser power is negligible for phase plates that simulate strong atmospheric turbulence. Based on the system described in this paper, a phase plate simulating strong atmospheric turbulence can be measured at a laser power of 5 mW or higher. Therefore, controlling the laser's output power is necessary when measuring a phase plate for simulating atmospheric turbulence, especially for phase plates with low r0 values.

Vision Based Position Detection System of Used Oil Filter using Line Laser (라인형 레이저를 이용한 비전기반 차량용 폐오일필터 검출 시스템)

  • Xing, Xiong;Song, Un-Ji;Choi, Byung-Jae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.3
    • /
    • pp.332-336
    • /
    • 2010
  • There are so many successful applications to image processing systems in industries. In this study we propose a position detection system for used oil filter by using a line laser. We have been done on the development of line laser as interaction devices. A camera captures images of a display surface of a used oil filter and then a laser beam location is extracted from the captured image. This image is processed and used as a cursor position. We also discuss an algorithm that can distinguish the front part and rear part. In particular we present a robust and efficient linear detection algorithm that allows us to use our system under a variety lighting conditions, and allows us to reduce the amount of image parsing required to find a laser position by an order of magnitude.

평면 레이저 유도 형광법을 이용한 엔진 연소실 OH 라디칼 계측

  • 오승묵;조규백;이중재;고동섭
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.6
    • /
    • pp.468-472
    • /
    • 1999
  • 평면 레이저 유도 형광법을 사용하여, 가시와 엔진내부에서 연소 과정이 진행되느 동안 OH라디칼 분포에 대한 2차원 영상을 계측하였다. Rayleigh 산란광을 차단하기 위해서 광대역 필터인 UG11을 사용하였으며, OH 형광 영상은 ICCD카메라로 수집하였다. OH라디칼 은 Q1(11)과 P2(8) 파장으로 여기하였다. 엔진 연료로는 iso-octane을 사용하였으며, 이 연료에서는 자체 형광이 발생하지 않았다. 난류를 암시하는 주름진 화염 경계면을 명확하게 관측하였으며, 어떤 영상에서는 화염 섬(flame island)이 나타나기도 한다.

  • PDF

A study on the construction of 3D image of strawberry using 2D laser displacement sensor (2차원 레이저 변위 센서를 이용한 딸기의 3차원 입체 영상 구축에 관한 연구)

  • Lim, Jongguk;Kim, Giyoung;Mo, Changyeun
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.141-141
    • /
    • 2017
  • 장미과(Rosaceae)에 속하는 딸기(Fragaria ananassa Duch.)는 비타민 C가 풍부하고 독특한 향기를 갖는 과채류로서 겨울에서 봄까지의 기간 동안 대부분 생식으로 소비되고 있다. 국내에서 재배되는 품종으로는 설향, 매향, 장희 등이 있으며 품종에 따라 성분과 함량이 다양하지만 일반적으로 유기산이 많아서 신맛과 단맛이 조화로운 특징이 있다. 소비자들이 딸기를 구입할 때 딸기가 포장된 상자에 모양이 일정하고 붉은 색상이 선명한 딸기에 호감을 갖게 된다. 딸기는 품종에 따라 기준이 되는 모양이 다르기 때문에 숙련된 선별사에 의해서 대부분 육안으로 선별되고 있는 실정이다. 하지만 개인적인 선별 능력의 차이와 주관적인 판단으로 인해 규격을 벗어난 딸기가 혼입되어 전체적인 품질 등급을 떨어뜨리는 경우가 종종 발생하기도 한다. 따라서 본 연구에서는 품종별로 기준이 되는 표준 형상과 비정상적인 모양의 기형 딸기를 객관적으로 판별하여 선별할 수 있는 영상 시스템을 구축하기 위해 수행되었으며 표준이 되는 딸기의 3차원 형상을 구축하기 위해 2차원 레이저 변위 센서를 이용하여 딸기의 입체 영상을 구축하고자 하였다. 실험을 위해 사용된 딸기는 시중에서 구입한 설향 품종이었으며 2차원 레이저 변위 센서는 라인 스캔 방식으로 1회 프로파일 스캔에 1,280개의 데이터 포인터를 획득할 수 있으며 분해능은 0.095~0.17 mm이었다. 상부에 부착된 2차원 레이저 변위 센서와 하부에 놓인 딸기의 거리는 100 mm였다. 획득한 딸기의 2차원 영상은 높이 차이를 이용하여 색상 농도로 표현하였으며 이 영상을 다시 3차원 영상으로 구축하였다.

  • PDF

Development of the Railway Abrasion Measurement System using Camera Model and Perspective Transformation (카메라 모델과 투시 변환에 의한 레일 마모도 측정 시스템 개발)

  • Ahn, Sung-Hyuk;Kang, Dong-Eun;Moon, Hyoung-Deuk;Park, So-Yeon;Kim, Man-Cheol
    • Proceedings of the KSR Conference
    • /
    • 2008.11b
    • /
    • pp.1069-1077
    • /
    • 2008
  • The railway abrasion measurement system have to satisfy two conditions to increase the measurement accuracy as follows. The laser region which is projected on the rail have to be extracted without the geometrical distortion. The mapping of the acquired laser region data on the rail profile have to be processed exactly. But, the conventional railway abrasion measurement system is deeply effected by the foreign substance( dust, rainwater, and so on ) on the railway or the sensitive response characteristic of the laser to the external measurement circumstance, and then the measurement errors arise from above factors. When the laser region is projected on the rail extracts from the acquired image, the interference of the light with the same frequency as the laser system occurs the serious problems. In the process of the mapping between the railway profile and the extracted laser region, the measurement accuracy is very highly effected by the geometrical distortion and the abnormal variation. In this Paper, we propose the novel method to increase the accuracy of the railway abrasion measurement dramatically. we designed and manufactured the high precision and fast image processing board with DSP Core and FPGA to measure the railway abrasion. The image processing board has the capability that the image of 1024X1280 from camera can be processed with the speed of 480 frame/sec. And, we apply the image processing algorithm base on the wavelet to extract the laser region is projected on the rail exactly. Finally, we developed high precision railway abrasion measurement system with the error range less than +/-0.5mm by which 2D image data is covered 3D data and mapped on the rail profile using the camera model and the perspective transform.

  • PDF

A Study on the 3D Shape Reconstruction Algorithm of an Indoor Environment Using Active Stereo Vision (능동 스테레오 비젼을 이용한 실내환경의 3차원 형상 재구성 알고리즘)

  • Byun, Ki-Won;Joo, Jae-Heum;Nam, Ki-Gon
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.10 no.1
    • /
    • pp.13-22
    • /
    • 2009
  • In this paper, we propose the 3D shape reconstruction method that combine the mosaic method and the active stereo matching using the laser beam. The active stereo matching method detects the position information of the irradiated laser beam on object by analyzing the color and brightness variation of left and right image, and acquires the depth information in epipolar line. The mosaic method extracts feature point of image by using harris comer detection and matches the same keypoint between the sequence of images using the keypoint descriptor index method and infers correlation between the sequence of images. The depth information of the sequence image was calculated by the active stereo matching and the mosaic method. The merged depth information was reconstructed to the 3D shape information by wrapping and blending with image color and texture. The proposed reconstruction method could acquire strong the 3D distance information, and overcome constraint of place and distance etc, by using laser slit beam and stereo camera.

  • PDF

A Study on the Improvement of Resolution of Optical Coherence Tomography System Using Femto-Second Laser (펨토초 레이저를 이용한 OCT 시스템의 분해능 향상에 관한 연구)

  • Yang, Sung-Kuk;Park, Yang-Ha;Chang, Won-Suk;Oh, Sang-Ki;Kim, Hyun-Duk
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.6
    • /
    • pp.31-36
    • /
    • 2004
  • Optical coherence tomography system has been extensively studied because it has some advantages such as imaging of high resolution, low cost, and compact size configuration. In order to obtain high resolution of OCT system we configured OCT system using a femto-second laser. We measure the pulse width using autocorrelator function because a femto-second laser is ultra short pulse. And we measured the practical resolution using theoretical equation and the measurement of reference sample. It is confirmed that the proposed OCT system has 1.5 times higher resolution and un distinctive cross-sectional image than OCT system with SLD as a light source.