• Title/Summary/Keyword: 레이저열원

Search Result 62, Processing Time 0.03 seconds

Finite element analysis for surface hardening of SM45C round bar by diode laser (다이오드 레이저를 이용한 SM45C 환봉 표면경화 열처리의 유한요소해석)

  • Cho, Hae-Yong;Kim, Kwan-Woo;Lee, Jae-Hoon;Suh, Jeong;Kim, Jong-Do
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.683-688
    • /
    • 2007
  • Surface heat treatment of SM45C round bar by diode laser was simulated to find it's condition by using commercial finite element code MARC. Due to axisymmetric geometry, a quarter of model for SM45C round bar was considered and user subroutines were applied to boundary condition for the heat transfer. Material properties such as conductivity, specific heat and mass density were given as a function of temperature. Rotation speed of round bar and feed rate of beam were considered to design heat source model. Shape parameter values of heat source were determined by beam profile. As results, Three dimensional heat source model for diode laser beam conditions of surface hardening has been designed by the comparison between the finite element analysis results and experimental data on SM45C round bar. Diode laser surface hardening for SM45C round bar was successfully simulated and it should be useful to determine optimal heat treatment condition.

  • PDF

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (I) - Comparison on Laser Weldability of AZ31B-H24 and AZ31B-O - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (I) - AZ31B-H24 및 AZ31B-O의 레이저 용접성 비교 -)

  • Lee, Jung-Han;Kim, Jong-Do;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.30 no.5
    • /
    • pp.70-75
    • /
    • 2012
  • This study is related to the laser weldability of AZ31B magnesium alloy, an all-purpose wrought alloy with good strength and ductility. In general, AZ31B is classified into AZ31B-H24 and AZ31B-O depending on temper designation. Thus, in this study, the laser weldability of AZ31B-H24 and AZ31B-O was investigated and compared. CW Nd:YAG laser was used to produce bead and butt joints. And the effects of welding conditions on the weldability of these joints were examined in detail. As a result of this study, AZ31B-H24 was found to have thinner oxide film and smaller grain size compared with AZ31B-O. Due to such difference, in bead welding, AZ31B-H24 had more wide welding range for full penetration compared with AZ31B-O. Furthermore, it was also confirmed that AZ31B-H24 and AZ31B-O have different welding conditions to obtain stable keyhole in butt welding.

Study on Characteristics of Laser Surface Transformation Hardening for Rod-shaped Carbon Steel (I) - Characteristics of Surface Transformation Hardening by Laser Heat Source with Gaussian Intensify distribution - (탄소강 환봉의 레이저 표면변태경화 특성에 관한 연구 (I) - 가우시안 파워밀도 분포의 레이저 열원을 이용한 표면변태경화 특성 -)

  • Kim, Jong-Do;Kang, Woon-Ju
    • Journal of Welding and Joining
    • /
    • v.25 no.3
    • /
    • pp.78-84
    • /
    • 2007
  • Laser Material Processing has been replaced the conventional machining systems - cutting, drilling, welding and surface modification and so on. Especially, LTH(Laser Transformation Hardening) process is one branch of the laser surface modification process. Conventionally, some techniques like a gas carburizing and nitriding as well as induction and torch heating have been used to harden the carbon steels. But these methods not only request post-machining resulted from a deformation but also have complex processing procedures. Besides, LTH process has some merits as : 1. It is easy to control the case depth because of output(laser power) adjustability. 2. It is able to harden the localized and complicated a.ea and minimize a deformation due to a unique property of a localized heat source. 3. An additional cooling medium is not required due to self quenching. 4. A prominent hardening results can be obtained. This study is related to the surface hardening of the rod-shaped carbon steel applied to the lathe based complex processing mechanism, a basic behavior of surface hardening, hardness distribution and structural characteristics in the hardened zone.

A Study on the Weldability of Magnesium Alloy by Laser Heat Source (III) - Butt Weldability of Sand Casting Magnesium Alloy using Pulsed Nd:YAG Laser - (레이저 열원을 이용한 마그네슘 합금의 용접성에 관한 연구 (III) - Pulsed Nd:YAG 레이저를 이용한 사형주조 마그네슘 합금의 맞대기 용접성 -)

  • Kim, Jong-Do;Lee, Jung-Han;Lee, Mun-Yong
    • Journal of Welding and Joining
    • /
    • v.31 no.2
    • /
    • pp.57-62
    • /
    • 2013
  • Magnesium has good castability and limited workability, so its products have been manufactured by almost casting processes. In this study, a pulsed Nd:YAG laser was used to butt-weld the sand casting magnesium alloys. And the effect of welding conditions such as peak power, pulse width, welding speed was evaluated in detail. As a result of this study, large underfill and plenty of spatter taken place under the conditions with high peak power. Thus, it is recommended to use low peak power and long pulse width to obtain good welds with deep penetration. It is also confirmed that the welding speed and pps(pulse per second) are directly connected at weld defects such as underfill, porosity.

Analysis of Laser Heat Distribution in Al-Cu Welding (알루미늄 구리 용접에서 레이저 열원 분포 분석)

  • Choi, Hae Woon
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.20 no.2
    • /
    • pp.1-7
    • /
    • 2021
  • A computer simulation was performed to study the effectiveness of temperature on the type of laser heat source in the context of the heterogeneous welding of aluminum and copper materials. Three different types of heat sources were used in the computer simulation: 1) Single Beam Straight Scan, 2) Single Beam Wobble Scan, and 3) Dual Beam Straight Scan. Among these sources, dual beam straight scan was found to be the most effective from the viewpoint of heat source control. Because the difference between the melting temperatures of copper and aluminum is approximately 400℃, a clear separation of heating temperature was required, and the dual beam straight scan provided superior controllability in this regard. When using the dual beam, the temperature of the 90:10 split was considerably easier to control than that of the 50:50 split. The optimal offset was calculated to be 4 mm off to the copper side, where the melting temperature and thermal conductivity were higher. In this manner, computer simulation was effectively used for determining the optimal laser beam hear source control without performing an actual laser welding experiment.

Heat Source Modeling of Laser ]Keyhole Welding: Part 2-Effects of Cap and Thickness Difference (레이저 키홀 용접의 열원 모델링: Part 2-간극과 두께 차이의 영향)

  • Lee Jae-Young;Lee Won-Beom;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.55-60
    • /
    • 2005
  • A three-dimensional Gaussian heat source model is modified to include the effects of the gap and thickness-difference for the laser keyhole welding. The gap of the butt joint influences the welding efficiency such that the melting area decreases linearly with the gap. When the different plate thickness is used such as the tailored blank welding, melting areas of the thick and thin plates are predicted by introducing the thickness-difference factor. The calculated results using the modified heat source show reasonably good agreements with the experimental results.

Heat Source Modeling of Laser Keyhole Welding: Part 1-Bead Welding (레이저 키홀 용접의 열원 모델링: Part 1-비드 용접)

  • Lee Jae-Young;Lee Won-Beom;Yoo Choong-Don
    • Journal of Welding and Joining
    • /
    • v.23 no.1
    • /
    • pp.48-54
    • /
    • 2005
  • Laser keyhole welding is investigated using a three-dimensional Gaussian heat source, and the heat source parameters such as the keyhole depth, welding efficiency and power density distribution factor are determined in a systematic way. For partial penetration, the keyhole depth is same as the penetration and is predicted using the experimental data. The welding efficiency is calculated using the ray-tracing method and the power density distribution factor is determined from the bead shape. Full penetration is classified into the transition, normal and excessive modes depending on the degree of keyhole opening. Thermal analysis of the bead-on-plate welds is conducted using the Gaussian heat source, and the calculated weld geometries show reasonably good agreements with the experimental results.

Study on Temperature Effect of Difficulty-to-Cut Material in Laser Heat Treatment Process (레이저 열원을 이용한 난삭재 열처리 공정의 온도 효과에 관한 연구)

  • Kim, Dong Hong;Jung, Dong Won;Lee, Choon-Man
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.31 no.1
    • /
    • pp.29-33
    • /
    • 2014
  • Recently, Difficult-to-cut materials are used in many manufacturing industry. But the difficult-to-cut materials are difficult-to-cutting process. So difficult to cut material cutting process was used after heat treatment through preheating for easy cutting process. In this study, Inconel 625 was preheating using laser heat source in computer simulation. Laser heat source temperature applied $1290^{\circ}C$ that suitable preheating temperature for Inconel 625. And temperature effects such as temperature distribution for moving heat source studied apply to similar actual process condition. Simulation results for heat treatment effects through temperature distribution verified.

A Study on Processing of Monolithic Rack Housing for Modular Steering Gear[I] - The Weldability of SAE1020 Steel by Different Heat Sources - (Steering Gear 모듈화를 위한 일체형 Rack Housing의 공정에 관한 연구[I] - 열원에 따른 SAE1020강의 용접특성 -)

  • Kim, Jong-Do;Lee, Chang-Je
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.2
    • /
    • pp.306-314
    • /
    • 2008
  • General metal welding occurs distortion. Also, reducing distortion is required much cost. Therefore, the purpose of this study is optimization of welding conditions to reduce distortion in welding of monolithic rack housing for modular steering gear. Firstly, heat source for welding was chosen arc and laser. Secondly, it investigated optimizing welding conditions in bead welding by arc and laser heat source, and welding conditions in fillet welding was optimized with welding shapes. Finally, it was measured temperature distribution of welds by infrared camera and angle distortion in fillet welding. As a result, laser welding was superior to arc welding on distortion.