• 제목/요약/키워드: 레이저어블레이션

검색결과 105건 처리시간 0.04초

열적 메커니즘에 의한 펄스레이저 어블레이션 현상의 수치계산 (Numerical computation of pulsed laser ablation phenomena by thermal mechanisms)

  • 오부국;김동식
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 춘계학술대회
    • /
    • pp.1572-1577
    • /
    • 2003
  • High-power pulsed laser ablation under atmospheric pressure is studied utilizing numerical and experimental methods with emphasis on recondensation ratio, and the dynamics of the laser induced vapor flow. In the numerical calculation, the temperature pressure, density and vaporization flux on a solid substrate are first obtained by a heat-transfer computation code based on the enthalpy method, and then the plume dynamics is calculated by using a commercial CFD package. To confirm the computation results, the probe beam deflection technique was utilized for measuring the propagation of a laser induced shock wave. Discontinuities of properties and velocity over the Knudsen layer were investigated. Related with the analysis of the jump condition, the effect of the recondesation ratio on the plume dynamics was examined by comparing the pressure, density, and mass fraction of ablated aluminum vapor. To consider the effect of mass transfer between the ablation plume and air, unlike the most previous investigations, the equation of species conservation is simultaneously solved with the Euler equations. Therefore the numerical model computes not only the propagation of the shock front but also the distribution of the aluminum vapor. To our knowledge, this is the first work that employed a commercial CFD code in the calculation of pulsed ablation phenomena.

  • PDF

금속의 펨토초 어블레이션의 수치해석 (Numerical analysis of fs laser ablation of metals)

  • 오부국;김동식;김재구;이제훈
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.657-658
    • /
    • 2006
  • Although there are many numerical models to simulate fs laser ablation of metals, no model can analyze the ablation phenomena over a wide range of fluence. In this work, a numerical code for simulating the fs laser ablation phenomena of metals has been developed. The two temperature model is employed to predict the ablation rate and the crater shape of metals using phase explosion mechanism in the relatively high fluence regime. Also, the ultrashort thermoelastic model is used for the low fluence regime to account for spallation of the sample by high strain rate. It has been demonstrated that the thermoelastic stress generated within the sample can exceed the yield stress of the material even near the threshold fluence. Numerical computation results are compared with the experiment for Cu and Ni and show good agreement. Discussions are made on the hydrodynamic model considering phase change and hydrodynamic flow.

  • PDF

515 nm 피코초 레이저를 이용한 구리 어블레이션 공정의 최적 에너지밀도에 대한 이론적 분석 (Theoretical Analysis on the Optimum Fluence for Copper Ablation with a 515 nm Picosecond Laser)

  • 신동식;조용권;손현기
    • 한국정밀공학회지
    • /
    • 제30권10호
    • /
    • pp.1009-1015
    • /
    • 2013
  • Ultra-short laser pulses are effective, when high requirements concerning accuracy, surface roughness and heat affected zone are demanded for surface structuring. In particular, picosecond laser systems that are suited to be operated in industrial environments are of great interest for many practical applications. This paper focused on inducing optimum process parameters for higher volume ablation rate by analyzing a relationship between crater diameter and optical spot size. In detail, the dependency of the volume ablation rate, penetration depth and threshold fluence on the pulse duration 8 ps and wavelength of 515 nm was discussed. The experimental results showed that wavelength of 515 nm resulted in less threshold fluence ($0.075J/cm^2$) on copper than IR wavelength ($0.3J/cm^2$). As a result, it was possible that optimum fluence for higher volume ablation rate was achieved with $0.28J/cm^2$.

펨토초 레이저의 이송속도에 따른 Invar 합금의 어블레이션 특성 (Characteristics of the Femto-second Pulsed Laser Ablation according to Feed Velocity on the Invar Alloy)

  • 정일영;강경호;김재도;손익부;노영철;이종민
    • 한국정밀공학회지
    • /
    • 제26권3호
    • /
    • pp.25-31
    • /
    • 2009
  • Femto-second laser ablation with the various feed velocities of the Invar alloy and the micro surface milling for the processing condition were studied. We used a regenerative amplified Ti:sapphire laser with a 1kHz repetition rate, 184fs pulse duration time and 785nm wavelength. Femto-second laser pulse was irradiated on the Invar alloy with the air blowing at the condition of various laser peak powers and feed velocities. An ablation characteristic according to feed velocity of the Invar alloy was appeared as the non-linear type at different zone of energy fluence. The micro surface milling of the Invar alloy using a mapping method was investigated. The optimal condition of micro surface milling was laser peak power of 22.8mW, feed velocity of 1 mm/s, beam gap of $1{\mu}m$. With the optimal processing condition, the fine rectangular shape without burr and thermal damage was achieved. Using the femto-second laser system, it demonstrates excellent tool for micro surface milling of the Invar alloy without heat effects and poor edge.

UV레이저를 이용한 Cr 박막의 어블레이션 (The UV Laser Ablation of Cr film on Glass Substrate)

  • 윤경구;이성국;김재구;최두선;황경현;정재경;장원석;나석주
    • 한국정밀공학회지
    • /
    • 제17권8호
    • /
    • pp.134-139
    • /
    • 2000
  • In order to understand the removal mechanism and seek the optimal conditions. KrF excimer laser ablation of Cr films on glass substrates is investigated. The surface morphology of the laser-irradiated spot is examined by SEM. The measured single-shot ablation rate is found to be about two times the result of numerical analysis based on a surface vaporization model and heat conduction theory. Surface morphology examination indicates that the Cr film is removed by the sequence of melting-surface vaporization-,melt expulsion by plasma recoil and that the outmost ripple of the diffraction pattern gives a strong effect on the morphology of molten Cr during the melting and vaporization processes. To seek the optimal process parameters for micro patterning morphological investigation is carried out experimentally on samples having different chromium film thicknesses. Optimal processing conditions are determined to enhance the accuracy and quality of thin film removal for micro patterning.

  • PDF

펨토초 레이저에 의한 티타늄 합금과 티타늄질화알루미늄 소결체의 어블레이션특성 비교연구 (Comparative Study on Ablation Characteristics of Ti-6Al-4V Alloy and Ti2AlN Bulks Irradiated by Femto-second Laser)

  • 황기하;오화봉;최원석;조성학;강명창
    • 한국기계가공학회지
    • /
    • 제18권7호
    • /
    • pp.97-103
    • /
    • 2019
  • Mn+1AXn (MAX) phases are a family of nano-laminated compounds that possess unique combination of typical ceramic properties and typical metallic properties. As a member of MAX-phase, $Ti_2AlN$ bulk materials are attractive for some high temperature applications. In this study, $Ti_2AlN$ bulk with high density were synthesized by spark plasma sintering method. X-ray diffraction, micro-hardness, electrical and thermal conductivity were measured to compare the effect of material properties both $Ti_2AlN$ bulk samples and a conventional Ti-6Al-4V alloy. A femto-second laser conditions were conducted at a repetition rate of 6 kHz and laser intensity of 50 %, 70% and 90 %, respectively, laser confocal microscope were used to evaluate the width and depth of ablation. Consequently, the laser ablation result of the $Ti_2AlN$ sample than that of the Ti-6Al-4V alloys show a considerably good ablation characteristics due to its higher thermal conductivity regardless of to high densification and high hardness.

초단 펄스레이저 어블레이션에 의한 스테인리스강 표면의 오염산화막 제거 특성 (A Study on the Removal Characteristics of a Radioactively Contaminated Oxide Film from the irradiated Stainless Steel Surface using Short Pulsed Laser Ablation)

  • 김근우;윤성식;김기철;이명원;강명창
    • 한국기계가공학회지
    • /
    • 제19권10호
    • /
    • pp.105-110
    • /
    • 2020
  • Radioactive Oxides are formed on the surface of the primary equipment in a nuclear power plant. In order to remove the oxide film that is formed on the surfaces of the equipment, chemical and physical decontamination technologies are used. The disadvantage of traditional technologies is that they produce secondary radioactive wastes. Therefore, in this study, the short-pulsed laser eco-friendly technology was used in order to reduce production of the secondary radioactive wastes. They were also used to minimize the damages that were caused on the base material and to remove the contaminated oxide film. The study was carried out using a Stainless steel 304 specimen that was coated with nickel-ferrite particles. Further, the laser source was selected with two different wavelengths. Furthermore, the depth of the coating layer was analyzed using a 3D laser microscope by changing the laser ablation conditions. Based on the analysis, the optimal conditions of ablation were determined using a 1064nm short-pulsed laser ablation technique in order to remove the radioactively contaminated oxide film from the irradiated stainless steel surface.

펄스 레이저 증착법에 의한 $(Pb_{0.72}La_{0.28})Ti_{0.93}O_3$ 박막의 증착 (Growth of $(Pb_{0.72}La_{0.28})Ti_{0.93}O_3$ thin film by pulsed laser deposition)

  • 은동석;박정흠;이상렬;박창엽
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1997년도 하계학술대회 논문집 C
    • /
    • pp.1236-1238
    • /
    • 1997
  • 유전체 PLT(28) ($Pb_{0.72}La_{0.28}Ti_{0.93}O_3$) 박막을 레이저 어블레이션 기법으로 Pt/Ti/$SiO_3$/Si기판을 $500^{\circ}C{\sim}700^{\circ}C$까지 가열한 상태에서 $O_2$분위기에서 증착시켰다. 증착된 박막은 SEM, XRD 등의 구조적 분석을 통하여 $600^{\circ}C$이상에서 증착된 경우, (111)방향으로 우세하게 성장한, 결정성이 양호한 박막임을 확인하였다. 박막의 전기적 특성은, 증착 온도가 $650^{\circ}C$일 때 약 1400정도의 높은 비유전율을 얻었으며, 전하저장밀도는 100[KV/cm]에서 약 9[${\mu}C/cm^2$]이었다.

  • PDF

레이저 어블레이션에 의한 초전도 이중모드 공진기 제작 (Fabrication of Superconducting Dual Mode Resonator using Laser Ablation)

  • 박주형;양승호;이상렬;안달;석중현
    • 한국전기전자재료학회:학술대회논문집
    • /
    • 한국전기전자재료학회 1998년도 춘계학술대회 논문집
    • /
    • pp.41-44
    • /
    • 1998
  • Dual mode resonators were fabricated using high temperature superconductor. The deposited material was $Y_1Ba_2Cu_3O_{7-x}$(YBCO) on MgO(100) substrate using pulsed laser deposition. Dual mode resonators were patterned by standard photolithography process and wet etching. At the back-side of the substrate, the ground plane with the metal layer of Ti and Ag was fabricated. The transition temperatures of YBCO films were 85-88 K, and network analyzer was used for testing the performance of the resonators. The input/output feedline angles of each resonator were $60^{\circ}$and $100^{\circ}$. The resonant frequency of resonators was 10 GHz. In this paper, dual mode resonator was fabricated for the application of satellite communication.

  • PDF

펨토초 레이저를 이용한 OLED 용 Shadow Mask Invar 합금의 어블레이션 (Femtosecond Pulsed Laser Ablation of OLED Shadow Mask Invar Alloy)

  • 정일영;강경호;김재도;손익부;노영철;이종민
    • 한국정밀공학회지
    • /
    • 제24권12호
    • /
    • pp.50-56
    • /
    • 2007
  • Femtosecond laser ablation of the Invar alloy and hole drilling for a shadow mask are studied. We used a regenerative amplified Ti-sapphire laser with a 1kHz repetition rate, 184fs pulse duration and 785nm wavelength. Femtosecond laser pulse was irradiated on the Invar alloy with air blowing at the condition of various laser peak power. An ablation characteristic of the Invar alloy was appeared non-linear at $125J/cm^2$ of energy fluence. For the application to a shadow mask, the hole drilling of the Invar alloy with the cross section of a trapezoidal shape was investigated. The ablated micro-holes were characterized using an atomic force microscopy(AFM). The optimal condition of hole pattern f3r a shadow mask was $4\;{\mu}m$ z-axis feed rate, 0.2mm/s circular velocity, $26.4{\mu}J$ laser peak power. With the optimal processing condition, the fine circular hole shape without burr and thermal damage was achieved. Using the femtoseocond laser system, it demonstrates excellent tool for the Invar alloy micro-hole drilling without heat effects and poor edge.