• Title/Summary/Keyword: 레이저스캐닝

Search Result 176, Processing Time 0.029 seconds

The Reflected Property Analysis of 3D Laser Scanning System as Object Surface Materials (대상물 표면물질에 따른 3차원 레이저스캐닝 시스템의 반사특성분석)

  • Um, Dae-Yong;Kim, Ji-Hye
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.27 no.3
    • /
    • pp.347-356
    • /
    • 2009
  • Recently many kind of industry request 3D Modeling and visualize for object. So application of 3D laser scanning system is improved for 3D modeling and survey. But although application of scanner is steady improved, there are variety of caution error is contained in the result. There is request high quality survey for it is restricted by when field. To analysis what is consider major factor of reflect ratio about surface specification as ratio and characteristics accidental error. So this research use 3D laer scanning system what is adopted method of laser measurement for improvement accuracy 3D scan data. As a result we can check reflect volume will be improve as specification of survey object if it has high reflect ratio. It able to improve accuracy how laser scan data is revised by reflect volume.

A Study on Correction of Airborne Laser Scanning Intensity Data (항공레이저스캐닝(ALS) 반사강도의 보정에 관한 연구)

  • Shin, Dong-June;Chang, Hoon;Choi, Nak-Hoon
    • 한국공간정보시스템학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.267-272
    • /
    • 2005
  • 최근 항공레이저스캐닝(ALS)은 높은 정확도와 경제성을 이유로 지형정보를 획득하는 탁월한 수단으로 주목받고 있다. ALS에 의해 수집되는 고도자료는 DSM, DEM 제작에 유용하게 이용된다. ALS는 고도자료 이외에 지표면의 물질적 특성을 나타내는 반사강도를 획득한다. 그러나 반사강도는 노이즈로 인해 널리 이용되지 못하고 있으며, 노이즈의 주원인은 반사각으로 알려져 있다. 따라서 본 연구는 센서 위치정보와 ALS 고도자료를 이용하여 반사각을 이용하여 반사강도를 보정하는 방법을 제안하였다 여기에는 ${\theta}$의 각도로 입사한 레이저의 강도는 수직으로 입사한 레이저의 강도보다 $sin{\theta}$만큼 감소한다는 물리학적 원리가 이용되었다 반사각은 지표면과 레이저가 이루는 각으로, 센서와 측정점 사이의 각과 지표면의 경사각의 두 단계로 나누었다. 방법의 적합 여부를 확인하기 위해 적외선 영역에서 분리도가 잘 이루어지는 아스팔트, 휴경지(토양), 콘크리트, 수목의 네 가지 검증영역을 선정하여 보정된 반사강도와 보정 전의 반사강도를 비교하였다. 모든 영역에서 반사강도가 증가하였으며 특히 콘크리트와 수목에서의 증가가 두드러졌다. 보정을 통해 네 영역에서 반사강도의 분리도가 향상됨을 물론 그 크기가 '아스팔트<토양<콘크리트<수목'으로 나타나는 이론적인 경향과 유사함을 확인할 수 있다.

  • PDF

A Study on the Usefulness of Photogrammetry through 3D Recording of the Rock-carved Standing Buddha in Singyeong-ri, Hongseong (홍성 신경리 마애여래입상의 3차원 기록화를 통한 포토그래메트리의 유용성 연구)

  • Oh, Jun-Young;Kim, Choong-Sik
    • Korean Journal of Heritage: History & Science
    • /
    • v.50 no.3
    • /
    • pp.30-43
    • /
    • 2017
  • The purpose of this study is to improve the usefulness of photogrammetry in the field of cultural heritage recording concentrated on laser scanning. Two measurement methods(laser scanning, photogrammetry) were compared in terms of accuracy and reality for the Rock-carved Standing Buddha in Singyeong-ri, Hongseong. With regard to accuracy, the distances of major points by both shape information and between the two shape information were compared. Only a deviation of about 1mm was found in the distance measurement of the major points by both shape information. In particular, the average distance between two shape information identified through aligning was only about 0.01mm. Also, the absolute deviation within about 2mm accounted for 70% of the total, and the absolute deviation within about 3.5mm was found to be 95.4% of the total. These values showed very high similarity between laser scanning and photogrammetry-based shape information. In respect of reality, the carved depth, texture, and patterns were compared. As a result of comparing four cross-sectional shapes, only slight differences were found in the shape information of both measurement techniques and similar shapes were identified. The overall texture of both shape information was also similar. However, the detailed shape based on the photogrammetry with decimation is realized with a smoother texture than the original and laser scanning. In particular, Photogrammetry also realistically expressed the various ornaments carved in the Rock-carved Buddha and the patterns with shallow depths were comparatively detailed.

Data Extraction for Remodelling of Building Interior Using 3D Laser Scanning (3D 레이저스캐닝을 이용한 건물 내부의 리모델링 데이터 추출)

  • Lee, Jin-Duk;Lee, Jae-Bin
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2008.10a
    • /
    • pp.315-317
    • /
    • 2008
  • 본 연구에서는 리모델링 대상 백화점 건물의 내부를 지상레이져스캐너(z-f 레이저 장비)에 의해 3D 데이터를 취득하고 일련의 처리과정을 통하여 건물 내부의 리모델링 시공을 위한 단면자료 추출 과정 등에 대하여 제시하였다. 리모델링시공을 위해서는 건물내부에 대한 정확한 도면이 필요하며, 시공당시의 설계도면이 분실 또는 훼손되었든지 실제치수가 당초 설계와 다른 경우 복잡한 내부를 측량해야 하는데 이 경우 레이저 스캐닝 및 관련 소프트웨어에 의한 도면데이터 추출과정을 제시하였다.

  • PDF

3차원 레이저 스캐너를 이용한 사면 관리기법 연구

  • O, Seok-Hun;Im, Eun-Sang;Jang, Bong-Seok
    • 한국지구과학회:학술대회논문집
    • /
    • 2005.09a
    • /
    • pp.103-111
    • /
    • 2005
  • 최근의 급속한 기술 발달을 통해 고전적인 측량 기법을 극복한 3차원 레이저 스캐너를 댐 관리기법의 연구에 적용하였다. 다목적댐과 같은 대규모 댐의 경우, 댐체 변형 특성 파악 및 주변 사면 안정성 연구 등과 관련하여 많은 측량이 필요하지만, 주로 제한된 점 (point)자료를 획득하여 분석하는 데 그쳤다. 본 연구에서는 이를 극복하기 위하여 3차원 레이저 스캐너 장비를 도입하여 조사하고자 하는 대상체에 대해 3차원 디지털 좌표를 다량으로 획득하여 이를 분석 처리함으로써 보다 효율적으로 댐 관리가 이루어지도록 하였다. 본 연구에서는 보강 사면에 대한 변형 특성을 파악하기 위해, 7개월 간격으로 3차원 스캐닝을 통해 좌표 값을 획득하여 이의 분석을 통해 향후 거동에 대해 예측하였다. 분석을 위해 두 시기의 스캐닝 자료를 병합(registration)하여 상대차이를 분석하고, 틀어진 각을 측정하였다. 또한 도면이 존재하지 않는 지자체의 댐에 대한 신속 측량을 3차원 레이저 스캐너로 대체하기 위한 방안에 대해 제시하고, 준공예정인 댐에 대한 스캐닝을 수행하여 설계 도면과의 비교 검토 결과를 분석하였으며, 향후 다양한 이용 방안에 대한 검토와 토론을 제안하고자 한다.

  • PDF

Comparison of Virtual 3D Tree Modelling Using Photogrammetry Software and Laser Scanning Technology (레이저스캐닝과 포토그래메트리 소프트웨어 기술을 이용한 조경 수목 3D모델링 재현 특성 비교)

  • Park, Jae-Min
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.2
    • /
    • pp.304-310
    • /
    • 2020
  • The technology in 3D modelling have advanced not only maps, heritages, constructions but also trees modelling. By laser scanning(Faro s350) and photogrammetry software(Pix4d) for 3D modelling, this study compared with real coniferous tree and both technology's results about characteristics of shape, texture, and dimensions. As a result, both technologies all showed high reproducibility. The scanning technique showed very good results in the reproduction about bark and leaves. Comparing the detailed dimensions on it, the error between the actual tree and modelling with scanning was 1.7~2.2%, and the scanning result was larger than the actual tree. The error between the actual tree and photogrammetry was only 0.2~0.5%, which was larger than the actual tree. On the other hand, the dark areas's modelling was not fully processed. This study is meaningful as a basic research that can be used for tree DB on BIM for the landscape architecture, landscape design and analysis with AR technology, historical tree and heritage also.

A Study on the Extraction of Horizontal Alignment and Cross-Section of Roads using Mobile Laser Scanning Data (모바일 레이저 스캐닝 데이터를 이용한 도로선형 및 횡단면 추출에 관한 연구)

  • Kim, Se-Geun;Lee, Hyun-Yong;Joo, Young-Eun
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.9 no.3
    • /
    • pp.207-218
    • /
    • 2006
  • The extraction of horizontal alignment and cross-section of roads is very important task in road safety diagnosis. Existing road safety diagnosis methods by investigators need much time and expense but don't provide various data. Therefor, we need road shape classification automatically and extraction method of horizontal alignment and cross-section of roads through digital photogrammetry system using GPS-VAN with laser scanner. In this paper, we propose a method of mobile laser scanning data acquisition, processing and developing extraction methods of horizontal alignment and cross-section of roads using mobile laser scanning data by GPS-VAN.

  • PDF

A detection algorithm for the installations and damages on a tunnel liner using the laser scanning data (레이저 스캐닝 데이터를 이용한 터널 시설물 및 손상부위 검측 알고리즘)

  • Yoon, Jong-Suk;Lee, Jun-S.;Lee, Kyu-Sung;SaGong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.9 no.1
    • /
    • pp.19-28
    • /
    • 2007
  • Tunnel management is a time-consuming and expensive task. In particular, visual analysis of tunnel inspection often requires extended time and cost and shows problems on data gathering, storage and analysis. This study proposes a new approach to extract information for tunnel management by using a laser scanning technology. A prototype tunnel laser scanner developed was used to obtain point clouds of a railway tunnel surface. Initial processing of laser scanning data was to separate those laser pulses returned from the installations attached to tunnel liner using radiometric and geometric characteristics of laser returns. Once the laser returns from the installations were separated and removed, physically damaged parts on tunnel lining are detected. Based on the plane formed by laser scanner data, damaged parts are detected by analysis of proximity. The algorithms presented in this study successfully detect the physically damaged parts which can be verified by the digital photography of the corresponding location on the tunnel surface.

  • PDF

Development of Cross Section Management System in Tunnel using Terrestrial Laser Scanning Data (지상 레이저 스캐닝 자료를 이용한 터널단면관리시스템 개발)

  • Roh, Tae-Ho;Kim, Jin-Soo;Lee, Young-Do
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.11 no.1
    • /
    • pp.90-104
    • /
    • 2008
  • Laser scanning technology with high positional accuracy and high density will be widely applied to vast range of fields including geomatics. Especially, the development of laser scanning technology enabling long range information extraction is increasing its full use in civil engineering. This study taps into the strengths of a terrestrial laser scanning technique to develop a tunnel cross section management system that can be practically employed for determining the cross section of tunnels more promptly and accurately. Three dimensional data with high density were obtained in a prompt and accurate manner using a terrestrial laser scanner. Data processing was then conducted to promptly determine arbitrary cross sections at 0.1meter, 0.5meter and 1.0meter intervals. A laser scanning technique was also used to quickly and accurately calculate the overbreak and underbreak of both each cross section and the entire tunnel section. As the developed system utilizes vast amounts of data, it was possible to promptly determine the shape of arbitrary cross section and to calculate the overbreak and underbreak more accurately with higher area precision. It is expected, therefore, that the system will not only enable more efficient and cost effective tunnel drilling management and monitoring but also will provide a basis for future construction and management of tunnel cross section.

  • PDF

Investigation of Domestic and Foreign Forest Resource Management Status and Analysis of Laser Scanning Technology Application (국내외 산림자원관리 현황 조사 및 레이저 스캐닝 기술의 산림적용 방안 분석)

  • Park, Joon-Kyu;Lee, Keun-Wang
    • Journal of Digital Convergence
    • /
    • v.19 no.11
    • /
    • pp.391-396
    • /
    • 2021
  • In this study, items for forest policy and forest resource research in Austria, Japan, New Zealand, and Indonesia, which are major forest advanced countries, were investigated, and the applicability of point cloud data acquired through laser scanning was identified. Through the study, it was found that forest policies in developed countries are being pursued for the purpose of sustainable forest conservation and management, job creation, and timber productivity improvement, and that new technologies are being researched and applied to actual projects. Korea has a high proportion of forests compared to the national land area compared to major forestry developed countries, but the accumulation of trees is relatively low, so it is a time for scientific forest management to improve the accumulation of trees. To understand the applicability of laser scanning technology, a forest resource survey using point cloud data was conducted, and the diameter of breast height, height, number of trees per unit area were calculated, and the shape of the crown was identified. If field experiments and accuracy evaluations applying various laser scanning technologies are carried out in the future, it will be possible to present the quantitative improvement of forest resource survey using foil cloud.