• Title/Summary/Keyword: 레이더 반사면적

Search Result 40, Processing Time 0.031 seconds

Analysis of Radar Cross Section for Advanced Naval Vessels (첨단 함형의 레이더 반사면적 해석)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Lee, Kwang-Kook;Kim, Jong-Chul;Na, In-Chan;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.5
    • /
    • pp.593-600
    • /
    • 2014
  • In this paper, Radar cross section (RCS) calculations of advanced naval vessels model with RCS reduction methods are simulated and RCS results are discussed. Especially, this paper are mainly focusing on the facts influencing on RCS, the ways minimizing RCS and material characteristics of RCS changing-rate. RCS analysis results are given for a DDG-1000 type advanced naval vessels, which show that as the elevation angle increased 10 degree, the mean RCS value increased 23.91 dBsm. Also, as the superstructure angle increased 6 degree, the mean RCS value reduced 1.27 dBsm. Finally, the radar absorbing material attachment at the front and back superstructure have been reduced 2.27 dBsm in terms of mean RCS value.

Optimization of Radar Absorbing Structures for Aircraft Wing Leading Edge (항공기 날개 앞전의 레이더흡수구조 최적화)

  • Jang, Byung-Wook;Park, Sun-Hwa;Lee, Won-Jun;Joo, Young-Sik;Park, Jung-Sun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.41 no.4
    • /
    • pp.268-274
    • /
    • 2013
  • In this paper, objective functions are defined for optimization of radar absorbing structures (RAS) on the aircraft wing leading edge. RAS is regarded as a single layer structure made of dielectrics. Design variables are the real and imaginary parts of complex permittivity. Reflection coefficient(RC) and radar cross section(RCS) are used in the objective function respectively. Transmission line theory is employed to calculate the RC. The RCS is evaluated by using physical optics(PO) for a leading edge part model. Genetic algorithm(GA) is used to perform optimization procedures. The radar absorbing performance of designed RAS is assessed by the RCS of a wing which has RAS on the leading edge.

Improve Acuracy of Rardar Areal Rainfall using Artificial Neural Network (ANN을 이용한 Radar 면적강우량의 정확도 향상)

  • Kim, Young-Il;Choi, Gi-An;Kim, Tae-Soon;Heo, Jun-Haeng
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.37-41
    • /
    • 2009
  • 본 연구에서는 티센망을 이용한 면적강우량 산정방법의 대안으로서 최근 들어 수자원공학 분야에의 활용성이 커지고 있는 고해상도 기상레이더의 반사도자료(dBZ)를 활용하여 면적강우량을 산정하였다. 또한 이렇게 산정된 레이더 면적강우량을 티센망으로써 산정된 면적강우량과 비교하여 그 유용성을 판단하였다. 연구지역으로는 소양강댐 유역을 선정하였으며, 연구기간은 2008년 가장 강한 강우를 보였던 상위 5개의 사상을 선정하였다. 본 연구에서는 레이더 반사도를 강우강도로 변환시키는 과정은 인공신경망(artificial neural network, ANN) 중에서 일반적으로 널리 사용되고 있는 다층 퍼셉트론 인공신경망 모형을 적용하였다. 연구방법으로는 선택된 4개의 인자를 입력노드에 넣어 인공신경망을 학습시킨 후 연구지역 내 10개 AWS 지상관측소의 강우량을 추정하여 정확도를 비교 분석하였다. 이를 바탕으로 최종적으로 레이더 면적강우량을 산정하여 기존의 티센망을 이용한 면적강우량과 그 값을 비교하였다. 그 결과 인공신경망을 이용한 레이더 강우량의 경우, 평균제곱오차(mean square error, MSE) 및 상관계수(correlation coefficient, CC)가 매우 양호한 값을 보였다. 또한 유역 내 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 약 $7%^{\sim}19%$ 정도 차이가 발생함을 확인하였으며, 레이더 면적강우량이 티센망을 이용한 면적강우량에 비하여 더 정확한 면적강우량을 산정할 수 있다고 판단된다.

  • PDF

Allowable limit of physical optics in radar cross section analysis of edge shape (가장자리 형상의 레이더 반사 면적 해석에서 물리광학기법의 적용 한계)

  • Baek, Sang-Min
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.46 no.1
    • /
    • pp.78-85
    • /
    • 2018
  • As a numerical analysis technique to predict the radar cross section of an aircraft, a full wave method or an asymptotic method is mainly used. The full-wave method is expected to be relatively accurate compared with the asymptotic method. The asymptotic method is numerically efficient, and it is more widely used in the RCS analysis. However, the error that occurs when estimating the RCS using the asymptotic method is difficult to predict easily. In this paper, we analyze the allowable limits of physical optics by constructing a wedge-cylinder model and comparing the RCS prediction results between the method of moment and physical optics while changing the edge shape. Finally, this study proposes a criterion for allowable limit of physical optics in the RCS estimation.

Development of Radar Cross Section Analysis Program for Complex Structures (복합 구조물의 레이더 반사면적 해석 프로그램 개발)

  • Kwon, Hyun-Wung;Hong, Suk-Yoon;Song, Jee-Hun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.435-442
    • /
    • 2014
  • In this paper, radar cross section (RCS) analysis program, RACSAN has been developed to predict RCS of complex structures. RACSAN is based on the high frequency range analysis method of Kirchhoff approximation in physical optics (PO). This program can present RCS including multi-bounce effect in complex structures by combination of geometric optics (GO) and PO method. GO method has a concern in the evaluation of the effective area, and PO method is involved in the calculation of RCS for the final effective area that is evaluated by GO method. Comparisons of the predicted results and analytical solutions showed that the developed program could be an effective tool for predicting RCS in complex structures.

Optimum Missile Attitude to Minimize Radar Exposure at a High Altitude (고고도에서의 피탐성 최소화 유도탄 최적자세 연구)

  • Moon, Kyujin;Jeong, Ui-Taek;Kim, JeongHun;Ryoo, Chang-Kyung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.12
    • /
    • pp.865-873
    • /
    • 2019
  • To improve the survivability of a missile, it needs to be lowered that the detection possibility by radars on the ground. The radar exposure of the target is given as a function of relative distance from the radar to the target and RCS (Radar Cross Section). The RCS of the missile is determined by the incidence angle of the target to electromagnetic radiation emitted from the radar. Under the assumption that the missile equips appropriate attitude control system, the attitude of the missile to minimize radar exposure at a high altitude is investigated in this paper. Two different types of performance cost are considered: the total sum of RCS and the total sum of SNR during the flight. Optimal solutions against multiple ground radars are found by using a SQP (Sequential Quadratic Programming)-based optimization technique.

The Performance Analysis of an Airborne Radar Altimeter based on Simultaneously Acquired LiDAR Data (비행 시험을 통한 레이더 전파고도계 특성 분석)

  • Yoon, Jongsuk;Kwak, Hee Jun;Kim, Yoon Hyoung;Shin, Young Jong;Yoo, Ki Jeong;Yu, Myeong Jong
    • Korean Journal of Remote Sensing
    • /
    • v.29 no.1
    • /
    • pp.81-94
    • /
    • 2013
  • The Radar altimeter transmits radio signals to the surface, receives the backscattered signals and measures the distance between the airplane and the nadir surface. The measurements of radar altimeter are affected by various factors on the surface below the aircraft. This study performed flight campaigns in June 2012 and acquired raw data from radar altimeter, LiDAR and other sensors. Based on the LiDAR DSM (Digital Surface Model) as a reference data, the characteristics of radar altimeter were analyzed in the respect of range and surface area affecting on the receiving power of the radar altimeter. Consequently, the radar altimeter was strongly affected by the surface area within beam width and reflectivity related to RCS (Radar Cross Section) rather than range.

Convenient Radar Received Power Prediction Method for North Korea SLBM Detection (북한 SLBM 탐지를 위한 레이다 수신전력 간편 추정 방법)

  • Seo, Hyeong-Pil;Park, Hyoung Hun;Lee, Kyoung-Haing
    • Journal of the Korea Society for Simulation
    • /
    • v.26 no.2
    • /
    • pp.51-58
    • /
    • 2017
  • This research focuses on convenient radar received power prediction method for detection predictions of North Korea SLBM(Submarine Launched Ballistic Missile). Recently, North Korea tested launching of SLBM which is threatening international security. Therefore, for active respondence to these threat, it is essential to analyze the radar detection prediction of SLBM. In this point of view, this work suggests a method for detection predictions for SLBM by simulating of RCS(Radar Cross Section) and wave propagation.

Design and Fabrication of Semi-cylindrical Radar Absorbing Structure using Fiber-reinforced Composites (섬유강화 복합재료를 이용한 반원통형 전자파 흡수구조의 설계 및 제작)

  • Jang, Hong-Kyu;Shin, Jae-Hwan;Kim, Chun-Gon;Shin, Sang-Hun;Kim, Jin-Bong
    • Composites Research
    • /
    • v.23 no.2
    • /
    • pp.17-23
    • /
    • 2010
  • The stealth technology can increase the survivability of aircrafts or warships and enhance the capability of mission completion in hostile territory. The purpose of this paper is to present the low observable structure with curved surfaces made by fiber-reinforced composites and to show the possibility of developing omnidirectional stealth platforms for military applications. In this study, we developed a radar absorbing structures(RAS) based on a circuit analog absorber to reduce the radar cross section(RCS) of an object with curved surfaces. Firstly, the RAS with a periodic square patterned conducting polymer layer was designed and simulated using a commercial 3-D electromagnetic field analysis program. Secondly, the designed semi-cylindrical structure with low RCS was fabricated using fiber-reinforced composites and conducting polymer. To make the periodic pattern layer, acts as resistive sheet, the intrinsic conducting polymer paste containing PEDOT with a polyurethane binder was used. Finally, the radar cross section was measured to evaluate the radar absorbing performances of the fabricated RAS by the compact range facility in POSTECH.

Designing Passive-Type Radar Reflector for Small Ship

  • Yim, Jeong-Bin;Kim, Woo-Suk;Ahn, Yoeng-Sub;Park, Sung-Hyeon;Jung, Jung-Sik;Lee, Kyu-Dong
    • Proceedings of KOSOMES biannual meeting
    • /
    • 2003.05a
    • /
    • pp.125-134
    • /
    • 2003
  • This paper describes on the design of Passive-type Radar Reflector for small Ship (PRR-S) based on the newly revised 2000 SOLAS regulations. The design idea, adopted in the study, is to hold PRR-S in the proper ‘catch rain’ position to avoid fluctuations of Radar Cross Section (RCS) due to ship's heeling. The PRR-S consists of octahedral-type radar reflector with circular plates and three-axis gimbaled stabilizer with weight on the bottom of outer gimbal ring. Performance test for the PRR is carried out in an anechoic chamber. The test results show that the reflected radar signal from PRR-S is more uniformly distributed than the reference model (Davis Echomaster).

  • PDF