DOI QR코드

DOI QR Code

Analysis of Radar Cross Section for Advanced Naval Vessels

첨단 함형의 레이더 반사면적 해석

  • Kwon, Hyun-Wung (Department of Naval Architecture and Ocean Engineering, Koje College) ;
  • Hong, Suk-Yoon (Department of Naval Architecture and Ocean Engineering, Seoul National University) ;
  • Lee, Kwang-Kook (Department of Naval Architecture, Ocean and IT Engineering, Kyungnam University) ;
  • Kim, Jong-Chul (Naval System R&D Institute, Agency for Defense Development) ;
  • Na, In-Chan (Department of Naval Architecture and Ocean Engineering, Chonnam National University) ;
  • Song, Jee-Hun (Department of Naval Architecture and Ocean Engineering, Chonnam National University)
  • 권현웅 (거제대학교 조선해양공학과) ;
  • 홍석윤 (서울대학교 조선해양공학과) ;
  • 이광국 (경남대학교 조선해양IT공학과) ;
  • 김종철 (국방과학연구소) ;
  • 나인찬 (전남대학교 조선해양공학전공) ;
  • 송지훈 (전남대학교 조선해양공학전공)
  • Received : 2014.09.16
  • Accepted : 2014.10.28
  • Published : 2014.10.31

Abstract

In this paper, Radar cross section (RCS) calculations of advanced naval vessels model with RCS reduction methods are simulated and RCS results are discussed. Especially, this paper are mainly focusing on the facts influencing on RCS, the ways minimizing RCS and material characteristics of RCS changing-rate. RCS analysis results are given for a DDG-1000 type advanced naval vessels, which show that as the elevation angle increased 10 degree, the mean RCS value increased 23.91 dBsm. Also, as the superstructure angle increased 6 degree, the mean RCS value reduced 1.27 dBsm. Finally, the radar absorbing material attachment at the front and back superstructure have been reduced 2.27 dBsm in terms of mean RCS value.

본 연구에서는 첨단 함형에 레이더 반사면적 감소기술을 적용하고 특성을 분석하였다. 특히, 레이더 반사면적에 영향을 주는 요소, 레이더 반사면적을 최소화 하는 방안, 표적의 특수 재질 물성에 대한 레이더 반사면적의 변화 영향을 고찰하였다. DDG-1000 type 첨단 함형의 함정 고각별 레이더 반사면적 해석 결과 고각이 10도 높아짐에 따라서 RCS 평균값이 23.91 dBsm 증가하는 것을 확인하였다. 또한, 함정 상부구조물의 경사각이 6도 증가함에 따라서 RCS 평균값이 1.27 dBsm 감소하는 것을 확인하였다. 마지막으로 상부구조물 앞면과 뒷면에 전파흡수체를 부착한 경우 RCS 평균값이 2.27 dBsm 감소 하는 것을 확인하였다.

Keywords

References

  1. Chambers, B. and A. Tennant(1996), Optimized design of Jaumann radar absorbing materials using a genetic algorithm, IEEE proc. radar, sonar, navig., Vol. 143, No. 1, pp. 23-30. https://doi.org/10.1049/ip-rsn:19960316
  2. Cheng, D. K.(1993), Fundamentals of Engineering Electromagnetics, Addison-Wesley, Massachusetts, pp. 272-330.
  3. Collin, R. E.(1992), Foundations for microwave engineering, McGraw-Hill, pp. 72-219.
  4. Goudos, S. K.(2007), A versatile software tool for microwave planar radar absorbing materials design using global optimization algorithms, Materials and Design, Vol. 28, pp. 2585-2595. https://doi.org/10.1016/j.matdes.2006.10.016
  5. Kim, K. H., D. S. Cho and J. H. Kim(2007), Broad-band Multi-layered Radar Absorbing Material Design for Radar Cross Section Reduction of Complex Targets Consisting of Multiple Reflection Structures, Journal of the Society of Naval Architects of Korea, Vol. 44, No. 4, pp. 445-450. https://doi.org/10.3744/SNAK.2007.44.4.445
  6. Knott, E. F., J. F. Shaeffer and M. T. Tuley(1993), Radar Cross Section, 2nd Edition, Artech House, Boston.London, pp. 183-224.
  7. Kwon, H. W., S. Y. Hong and J. H. Song(2014), Development of radar cross section analysis program for complex structures, Journal of the Korean Society of Marine Environment & Safety, Vol. 20, No. 4, pp. 435-442. https://doi.org/10.7837/kosomes.2014.20.4.435
  8. Michielssen, E., S. M. Sajer, S. Ranjithan and R. Mittra (1993), Design of lightweight, broad band microwave absorbers using genetic algorithms, IEEE Trans. Microwave Theory Tech, Vol. 41, No. 6/7, pp. 1024-1031. https://doi.org/10.1109/22.238519
  9. Park, H. S., I. S. Choi, J. K. Bang, S. H. Suk, S. S. Lee and H. T. Kim(2004), Optimization design of radar absorbing materials for complex target, Journal of electromagnetic waves and applications, Vol. 18, pp. 1105-1117 https://doi.org/10.1163/1569393042955432
  10. Park, T. Y.(2004), A study on RCS prediction code for battleship, MS. Dissertation, POSTECH, pp. 29-61.
  11. Saville, P.(2005), A review of radar absorbing material, TM 2005-003, Defence R&D Canada-Atlantic, pp. 7-23.
  12. Weile, D. S., E. Michielssen and D. E. Goldberg(1995), Genetic algorithm design of pareto optimal broadband microwave absorbers, IEEE Trans. electromagn. compat., Vol. 38, No. 3, pp. 518-525.

Cited by

  1. Analysis of Radar Cross Section for Naval Vessels with Metamaterials and Radar Absorbing Materials vol.21, pp.6, 2015, https://doi.org/10.7837/kosomes.2015.21.6.737
  2. 레이더반사면적 감소를 위한 폐위형 마스트 특성 연구 vol.23, pp.6, 2014, https://doi.org/10.7837/kosomes.2017.23.6.746
  3. Shape Optimization of an Integrated Mast for RCS Reduction of a Stealth Naval Vessel vol.11, pp.6, 2014, https://doi.org/10.3390/app11062819