• Title/Summary/Keyword: 레이더강우강도

Search Result 88, Processing Time 0.026 seconds

Radar Rainfall Estimation Using Window Probability Matching Method : 1. Establishment of Ze-R Relationship for Kwanak Mt, DWSR-88C at Summer, 1998 (WPMM 방법을 이용한 레이더 강수량 추정 : 1. 1998년 여름철 관악산 DWSR-88C를 위한 Ze-R 관계식 산출)

  • Kim, Hyo-Gyeong;Lee, Dong-In;Yu, Cheol-Hwan;Gwon, Won-Tae
    • Journal of Korea Water Resources Association
    • /
    • v.35 no.1
    • /
    • pp.25-36
    • /
    • 2002
  • Window Probability Matching Method(WPMM) is achieved by matching identical probability density of rain intensities and radar reflectivities taken only from small window centered about the gage. The equation of $Z_{e}-R$ relationship is obtained and compared with data between a DWSR-88C radar and high density rain gage networks within 150km from radar site in summer season, 1998. The probability density of radar effective reflectivity is distributed with high frequency near 15dBZ. The frequency distribution of rain intensities shows that rain intensity is lower than 10mm/hr in most part of radar coverage area. As the result of $Z_{e}-R$ relationship using WPMM, curved line has shown to the log scale spatially and it can be explained more flexible than any straight-line power laws at the transformation to the rainfall amount from $Z_e$ value. During 3 months, total radar cumulative rainfall amount estimated by $Z=200R^{1.6}$ and WPMM relationships are 44 and 80 percentages of total raingage amount, respectively. Therefore, $Z_{e}-R$ relationships by WPMM may be widely needed a statistical method for the computation of accumulated precipitation.

HSR estimation method of electromagnetic precipitation observation stations (전파강수관측소 HSR 추정 기법)

  • Lim, Sanghun;Yoon, Seong Sim;Cho, Yo Han;Jeong, Hyeon Gyo
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2021.06a
    • /
    • pp.377-377
    • /
    • 2021
  • 본 연구에서는 기존 대형 강우레이더 관측망에 대한 동해안 지역 관측공백 해소와 집중호우에 의한 재해예방을 목적으로 운영 중인 삼척과 울진 전파강수관측소의 강우추정을 위해 빔차폐 등을 고려한 HSR(Hybrid Surface Rainfall) 추정 기법을 소개하고 지상강우량과 비교 결과를 제시한다. 전파강수관측소의 HSR 추정 기법은 1) 자료 품질관리, 2) 고도별 자료의 병합, 3) 병합 자료 기반 분포형 비차등위상차 산정, 그리고 4) HSR 강우 추정 단계로 이루어진다. 품질관리 과정은 전파강수관측소의 관측자료 중 강우추정에 직접적으로 사용되는 반사도, 차등위상차의 품질을 관리하는 단계이다. 자료 병합 과정에서는 고도별로 품질관리된 반사도와 각 고도의 차등위상차의 레이별 차이를 병합한다. 그리고 병합된 반사도와 차등위상차의 레이별 차이를 이용하여 비차등위상차를 구한다. 마지막으로 산출된 비차등위상차를 이용하여 R-KDP 관계식을 이용하여 HSR을 산출한다 시험적용 결과 제안된 HSR 강우 추정 기법이 강한 강우가 발생한 지역의 강우강도를 잘 추정하는 것으로 확인되었다.

  • PDF

Analysis of Global Precipitation CMORPH (광역적 강우자료 CMORPH 분석)

  • Kim, Joo-Hun;Kim, Kyeong-Tak
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2012.05a
    • /
    • pp.887-887
    • /
    • 2012
  • 기후변화에 의한 강우패턴의 변화는 강우량 및 강우강도의 증가로 대표되며 국립기상연구소 (2011)에 의하면 현재와 같은 탄소배출이 줄어들지 않는다면 2050년 우리나라의 강수량은 16% 증가하고 일 강수량 80mm 이상의 호우발생일수가 60%이상 증가될 것으로 전망하고 있다. 이와 같이 기후변화로 인해 발생빈도가 증가추세인 집중호우는 산사태와 같은 2차 피해를 유발하고 있으며 강우의 예측 및 실시간 모니터링은 재해 예방 및 수자원관리, 국가 방재역량 강화를 위해 연구되어야 할 분야이다. 이에 본 연구에서는 광역적 강우자료로서 미국 NOAA의 기후예측센터에 의해 제공되는 글로벌 강우량 CMORPH와 지상 강우자료와의 비교 분석을 통해 CMORPH 자료의 수자원 분야 이용 가능성을 분석하는 것을 목적으로 한다. CMORPH는 고급의 시공간적 해상도를 가지며, 단기간의 기후 예측센터 모핑(morphing) 방법에 의한 "CMORPH"라 불리우는 강우평가 알고리즘과 새로운 위성 기반 기술을 이용하여 개발되었다. CMORPH 기술에 의해 생산된 글로벌 강우 추정은 저궤도 위성 수동 마이크로파(passive microwaves, PMW) 관측으로부터 유도되고, 그 형태는 전적으로 정지궤도 위성(geostationary satellite) 적외선(IR) 데이터로부터 얻어진 공간적 전파 정보 (모션 벡터)를 통해 전송된다. 이 기술은 PMW 데이터로부터 유도된 비교적 고품질의 추정 강우를 전파하기 위하여 30분 간격의 정지궤도 위성 IR 이미지로부터 파생된 모션 벡터를 이용하며, 때때로 레이더보다 더 나은 성능을 보이기도 하고(Apip 등 2010), CMORPH의 지역적 제공범위는 $60^{\circ}N-60^{\circ}S$이고 2002년 12월부터 제공하고 있다. 본 연구에서는 CMORPH 자료 중 2002년 12월부터 제공하는 3시간 누가강우 자료를 수집하였고, 자료의 정확도 분석은 갑천유역을 대상으로 하였다. 3시간 누가 강우량을 1일 누가 강우량으로 변환한 후 금강홍수통제소의 갑천 유역 강우관측소 5곳의 강우자료를 티센 평균에 의한 유역 평균강우자료와 비교하였다. 2009년 1년간의 지상관측자료와 CMORPH자료를 비교한 결과 가 0.34 정도로 분석되었으나 추가 연구를 통해 마이크로 웨이브 강우자료 및 3시간 강우자료, 그리고 30분 강우자료의 분석을 통해 다양한 형태의 강우자료 확보뿐만 아니라 광역적인 강우특성 분석도 가능하여 연구 결과의 동아시아지역 등으로 확대 적용할 수 있을 것으로 기대한다.

  • PDF

Precipitation Information Retrieval Method Using Automotive Radar Data (차량레이더 자료 기반 강수정보 추정 기법)

  • Jang, Bong-Joo;Lim, Sanghun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.40 no.3
    • /
    • pp.265-271
    • /
    • 2020
  • Automotive radar that is one of the most important equipment in high-tech vehicles, is commonly used to detect the speed and range of objects such as cars. In this paper, in addition to objects detection, a method of retrieving precipitation information using the automotive radar data is proposed. The proposed method is based on the fact that the degree of attenuation of the returned radar signal differs depending on the precipitation intensity and the assumption that the distribution of precipitation is constant in short spatial and temporal observation. The purpose of this paper is to assesses the possibility of retrieving precipitation information using a vehicle radar. To verify the feasibility of the proposed method during actual driving, a method of estimating precipitation information for each time segment of various precipitation events was applied. From the results of driving field experiments, it was found that the proposed method is suitable for estimating precipitation information in various rainfall types.

A Case Study on Rainfall Observation and Intensity Estimation using W-band FMCW Radar (W밴드 FMCW 레이더를 이용한 강우 관측 및 강우 강도 추정 사례 연구)

  • Jang, Bong-Joo;Lim, Sanghun
    • Journal of Korea Multimedia Society
    • /
    • v.22 no.12
    • /
    • pp.1430-1437
    • /
    • 2019
  • In this paper, we proposed a methodology for estimating rainfall intensity using a W-band FMCW automotive radar signal which is the core technology of autonomous driving car. By comparing and analyzing the results of rainfall and non-rainfall observation, we found that the reflection intensity of the automotive radar is changed with rainfall intensity. We could confirm the possibility of deriving the quantitative precipitation estimation using the methodology derived from this result. In addition it can be possible to develop a new paradigm of precipitation observation technique by observing various events together with the weather radar and the ground rainfall observation equipment.

Assessment of Radar AWS Rainrate for Streamflow Simulation on Ungauged Basin (미계측 유역의 유출모의를 위한 RAR 자료의 적용성 평가 연구)

  • Lee, Byong-Ju;Ko, Hye-Young;Chang, Ki-Ho;Choi, Young-Jean
    • Journal of Korea Water Resources Association
    • /
    • v.44 no.9
    • /
    • pp.721-730
    • /
    • 2011
  • The objective of this study is to assess the availability of streamflow simulation using Radar-AWS Rain rate (RAR) data which is produced by KMA on real-time. Chuncheon dam upstream basin is selected as study area and total area is 4859.73 $km^2$. Mean Areal Precipitation (MAP) using AWS and RAR are calculated on 5 subbasin. The correlationship of hourly MAPs between AWS and RAR is weak on ungauged subbasins but that is relatively high on gauged ones. We evaluated the simulated discharge using the MAPs derived from two data types during flood season from 2006 to 2009. The simulated discharges using AWS on Chuncheon dam (gauged basin) are well fitted with measured ones. In some cases, however, discharges using AWS on Hwacheon dam and Pyeonghwa dam with some ungauged subbasins are overestimated on the other hand, ones using RAR in the same case are well fitted with measured ones. The hourly RAR data is useful for the real-time river forecast on the ungauged basin in view of the results.

Improvement of Rainfall Estimation according to the Calibration Bias of Dual-polarimetric Radar Variables (이중편파레이더 관측오차 보정에 따른 강수량 추정값 개선)

  • Kim, Hae-Lim;Park, Hye-Sook;Ko, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.12
    • /
    • pp.1227-1237
    • /
    • 2014
  • Dual-polarization can distinguish precipitation type and dual-polarization is provide not only meteorological phenomena in the atmosphere but also non-precipitation echoes. Therefore dual-polarization radar can improve radar estimates of rainfall. However polarimetric measurements by transmitting vertically vibration waves and horizontally vibrating waves simultaneously is contain systematic bias of the radar itself. Thus the calibration bias is necessary to improve quantitative precipitation estimation. In this study, the calibration bias of reflectivity (Z) and differential reflectivity ($Z_{DR}$) from the Bislsan dual-polarization radar is calculated using the 2-Dimensional Video Disdrometer (2DVD) data. And an improvement in rainfall estimation is investigated by applying derived calibration bias. A total of 33 rainfall cases occurring in Daegu from 2011 to 2012 were selected. As a results, the calibration bias of Z is about -0.3 to 5.5 dB, and $Z_{DR}$ is about -0.1 dB to 0.6 dB. In most cases, the Bislsan radar generally observes Z and $Z_{DR}$ variables lower than the simulated variables. Before and after calibration bias, compared estimated rainfall from the dual-polarization radar with AWS rain gauge in Daegu found that the mean bias has fallen by 1.69 to 1.54 mm/hr, and the RMSE has decreased by 2.54 to 1.73 mm/hr. And estimated rainfall comparing to the surface rain gauge as ground truth, rainfall estimation is improved about 7-61%.

Analysis on Characteristics of Orographic Effect about the Rainfall Using Radar Data: A Case Study on Chungju Dam Basin (레이더 자료를 이용한 호우의 산지효과 특성 분석: 충주댐 유역을 대상으로)

  • Ku, Jung Mo;Ro, Yonghun;Kim, Kyoungjun;Yoo, Chulsang
    • Journal of Korea Water Resources Association
    • /
    • v.48 no.5
    • /
    • pp.393-407
    • /
    • 2015
  • This study analyzed the characteristics of orographic effect using radar data for the Chungju dam basin. First, independent rainfall events were selected by applying the IETD (Interevent Time Definition) and rainfall threshold. Among those independent rainfall events, rather strong events were selected to decide the occurrence condition of orographic effect. Also, the average reflectivity was calculated for the entire period and for the period of storm center, and the change in reflectivity was analyzed by comparing the average reflectivity to that in the mountain area. Important rainfall factors were selected and applied to the logistic regression model to decide the occurrence condition of orographic effect. Summarizing the results is as follows. First, evaluation of the radar data along the passing line of a storm showed the increase of radar reflectivity in the mountain area. Second, the result of logistic regression analysis showed that the orographic effect in the Chungju Dam Basin mostly occurred when the rainfall intensity was higher than 4 mm/hr, the storm velocity was lower than 4 km/hr, and the approach angle was $90^{\circ}{\pm}5^{\circ}$.

A Comparative Study of the Rainfall Intensity Between Ground Rain Gauge and Weather Radar (지상우량계와 기상레이더 강우강도의 비교연구)

  • Ryu, Chan-Su;Kang, In-Sook;Lim, Jae-Hwan
    • Journal of Integrative Natural Science
    • /
    • v.4 no.3
    • /
    • pp.229-237
    • /
    • 2011
  • Today they use a weather radar with spatially high resolution in predicting rainfall intensity and utilizing the information for super short-range forecast in order to make predictions of such severe meteorological phenomena as heavy rainfall and snow. For a weather radar, they use the Z-R relation between the reflectivity factor(Z) and rainfall intensity(R) by rainfall particles in the atmosphere in order to estimate intensity. Most used among the various Z-R relation is $Z=200R^{1.6}$ applied to stratiform rain. It's also used to estimate basic rainfall intensity of a weather radar run by the weather center. This study set out to compare rainfall intensity between the reflectivity of a weather radar and the ground rainfall of ASOS(Automatic Surface Observation System) by analyzing many different cases of heavy rain, analyze the errors of different weather radars and identify their problems, and investigate their applicability to nowcasting in case of severe weather.

An analysis of land displacements in terms of hydrologic aspect: satellite-based precipitation and groundwater levels (수문학적 관점에서의 지반 변위 분석: 인공위성 강우데이터와 지하수위 연계)

  • Oh, Seungcheol;Kim, Wanyub;Kang, Minsun;Yoon, Hongsic;Yang, Jungsuk;Choi, Minha
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.12
    • /
    • pp.1031-1039
    • /
    • 2022
  • As one of the hydrological factors closely related to landslides, precipitation indirectly affects slope stability by generating external forces. Groundwater level fluctuations have attracted more attention lately as factors that directly affect slope stability have become more prominent. Therefore, this study attempted to analyze the relationship between variables through changes in precipitation, groundwater levels, and land displacement. A time series-based analysis was conducted using satellite-based precipitation and point-based groundwater levels in conjunction with the PSInSAR technique to simulate land displacement in urban and mountainous areas. There was a sharp rise in groundwater levels in both urban and mountain areas during heavy rainfall, and a continuous decrease in urban areas when rainfall was low. 6 mm of displacements was observed in the mountainous area as a results of soil outflow from the topsoil layer, which was accompanied by an increased groundwater level. Meanwhile, different results were found in urban area. In response to the rise in groundwater level, the land displacement increases due to the expansion of soil skeletons, while the decrease seems to be attributed to anthropogenic influences. Overall, there was no consistent relationship between groundwater levels and land displacement, which appears to be caused by factors other than hydrological factors. Additional consideration of environmental factors could contribute to a deeper understanding of the relationship between the two factors.