• Title/Summary/Keyword: 레이다 신호

Search Result 422, Processing Time 0.023 seconds

창조 ICT R&D 동향 -생활전파 레이다 센서 SDR 플랫폼 기술 개발

  • Gwak, Yeong-Gil
    • The Proceeding of the Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.1
    • /
    • pp.63-64
    • /
    • 2015
  • Software-Defined Radar는 기본 레이다 하드웨어의 기능을 소프트웨어로 구현할 수 있게 하여 하드웨어의 재구성이 용이하므로 다양한 활용 목적에 따라 레이다 기능을 다양화할 수 있고, 개발기간과 비용을 줄일 수 있는 장점이 있다. 특히 소프트웨어의 유연성이 높아 레이다 주변 환경에 따라 레이다 신호처리 알고리듬을 쉽게 적용할 수 있다. 본 기고에서는 다중대역에서 다중모드로 운용할 수 있는 소프트웨어 기반의 레이다 플랫폼 개발에 대한 기술 배경과 개발 내용을 설명하였고, 다양한 활용 전망을 살펴보았다.

  • PDF

Performance Analysis of Three-Dimensional Radar for Angle and Distance Errors (3차원 레이다 궤적 생성 및 성능 분석)

  • Lim, Hyeongyong;Jang, Yeonsoo;Lee, Taewoo;Hwang, Jaeduck;Yoon, Dongweon
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2014.10a
    • /
    • pp.837-839
    • /
    • 2014
  • In radar systems, information of three-dimensional (3D) trajectory is necessary for tracking targets. The information of 3D trajectory for a 3D radar can be obtained by estimating the azimuth angle, the elevation angle, and the distance. The estimated information of the angles and the distance has errors according to received signals. Since these errors affect performances of 3D radar systems, performance analysis of 3D radar for the angles and the distance errors is required. In this paper, the performance of 3D radar systems is analyzed by root mean square error (RMSE) between true trajectory information and the estimated trajectory information according to the angles and the distance errors.

  • PDF

Design of FMCW radar waveform for flow measurement (유량 측정을 위한 FMCW 레이다 파형 설계)

  • Lee, Changki
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.1
    • /
    • pp.83-90
    • /
    • 2020
  • A commercial flow measurement radar sensor estimates a quantity of flowed water using surface flow rate. In this way, the amount of water flowing per unit time cannot be measured accurately because of using an estimation result and it can't response environmental changes. For more accurate flow measurements we need width of waterway, water level and distance that water moved per unit time. Commonly two sensors are used to measure water level and flow rate. In this paper, we propose a method to simultaneously measure the water level and surface flow velocity using a single FMCW radar sensor and design the transmission waveform. In order to verify the waveform design, received signal is modelled based on transmission waveform. In addition, we consider phenomenons and problems that may occur in signal processing.

Development of Sea Surface Wind Monitoring System using Marine Radar (선박용 레이다를 이용한 해상풍 모니터링 시스템 개발)

  • Park, Jun-Soo
    • Journal of Ocean Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.62-67
    • /
    • 2018
  • A wave buoy commonly used for measurements in marine environments is very useful for measurements on the sea surface wind and waves. However, it is constantly exposed to external forces such as typhoons and the risk of accidents caused by ships. Therefore, the installation and maintenance charges are large and constant. In this study, we developed a system for monitoring the sea surface wind using marine radar to provide spatial and temporal information about sea surface waves at a small cost. The essential technology required for this system is radar signal processing. This paper also describes the analytical process of using it for monitoring the sea surface wind. Consequently, developing this system will make it possible to replace wave buoys in the near future.

Wire Harness Design of Compact Tracking Radar (소형 추적 레이다 와이어 하네스 설계)

  • Kim, Hong-Rak;Kim, Youn-Jin;Woo, Seon-Keol;An, Se-Hwan
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.4
    • /
    • pp.35-41
    • /
    • 2020
  • The small tracking radar is a very important component of the wire harness design because the components are organically connected. In addition, the cable connected to the signal processing unit and the servo unit having a large number of digital signals should be prepared to prevent the CPU of the signal processing unit from malfunctioning due to electromagnetic noise. Cables for signal transmission in the ◯◯ GHz band must reflect the design of temperature, vibration, and shock. To design a wire harness in a small space, the size of the connector must be minimized. The issues to be considered are described and the design plan is presented.

Closed-Form Expression of Approximate ML DOA Estimates in Bistatic MIMO Radar System (바이스태틱 MIMO 레이다 시스템에 적용되는 ML 도래각 추정 알고리즘의 근사 추정치에 대한 Closed-Form 표현)

  • Paik, Ji Woong;Kim, Jong-Mann;Lee, Joon-Ho
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.28 no.11
    • /
    • pp.886-893
    • /
    • 2017
  • Recently, for detection of low-RCS targets, bistatic radar and multistatic radar have been widely employed. In this paper, we present the process of deriving the received signal modeling of the bistatic MIMO radar system and deals with the performance analysis of applying the bistatic signal to the ML arrival angle estimation algorithm. In case of the ML algorithm, as the number of the targets increases, azimuth search dimension for DOA estimation also increases, which implies that the ML algorithm for multiple targets is computationally very intensive. To solve this problem a closed-form expression of estimation error is presented for performance analysis of the algorithm.

Digitization Impact on the Spaceborne Synthetic Aperture Radar Digital Receiver Analysis (위성탑재 영상레이다 디지털 수신기에서의 양자화 영향성 분석)

  • Lim, Sungjae;Lee, Hyonik;Sung, Jinbong;Kim, Seyoung
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.49 no.11
    • /
    • pp.933-940
    • /
    • 2021
  • The space-borne SAR(Synthetic Aperture Radar) system radiates the microwave signal and receives the backscattered signal. The received signal is converted to digital at the Digital Receiver, which is implemented at the end of the SAR sensor receiving chain. The converted signal is formated after signal processing such as filtering and data compression. Two quantization are conducted in the Digital Receiver. One quantization is an analog to digital conversion at ADC(Analog-Digital Converter). Another quantization is the BAQ(Block Adaptive Quantization) for data compression. The quantization process is a conversion from a continuous or higher bit precision to a discrete or lower bit precision. As a result, a quantization noise is inevitably occurred. In this paper, the impact of two quantization processes are analyzed in a view of SNR degradation.

A Performance Enhancement of a Naval Multi-Function Radar Signal Processor (GPU를 이용한 함정용 다기능레이다 신호처리기 성능 개선 연구)

  • Kwon, Se-Woong;Hong, Sung-Min;Ryu, Seong-Hyun;Jung, Chae-Hyun;Sohn, Sung-Hwan;Lee, Ki-Won;Kang, Yeon-Duk
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.20 no.2
    • /
    • pp.141-147
    • /
    • 2020
  • We studied for GPU based signal processor for naval multi-function radar. We implemented processing software both DSP and GPU, and compared computation performances and power consumption. As a result, computation performance was enhanced from 1.2 to 4.1 times compared with a DSP result. From the results, GPU can alternating DSP based signal processor for common radar processor even though Naval Multi Function Radar.

Blind Waveform Estimation Scheme Based on ESPRIT for Nonuniform Linear Array MIMO Radars Using Distributed Multiple Electronic Sensors (분산 다중 전자전 센서를 이용한 ESPRIT 기반 비등간격 선형배열 MIMO 레이다의 암맹 직교신호 분리 기법)

  • Yeo, Kwanggoo;Chung, Wonzoo
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.29 no.11
    • /
    • pp.891-897
    • /
    • 2018
  • In this paper, we propose a blind estimation scheme for the antenna spacing of nonuniform linear array MIMO radar using distributed electronic sensors based on ESPRIT. We present a blind method to separate orthogonal waveforms of a MIMO radar based on the antenna spacing estimation. The estimated orthogonal waveforms of a MIMO radar can be used for disabling opponent MIMO radars.