• Title/Summary/Keyword: 레올로지

Search Result 179, Processing Time 1.643 seconds

Prediction of Pumping Friction Resistance Coefficient in Pipe Influenced by Concrete Rheology Properties (콘크리트의 레올로지 특성에 따른 펌핑관내 마찰저항계수의 예측에 관한 연구)

  • Kim, Hyung-Rae;Cho, Ho-Kyoo;Kim, Jung-Chul;Lee, Kewn-Chu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.14 no.2
    • /
    • pp.118-126
    • /
    • 2014
  • The establishment of the technology for evaluating friction resistance and pipe pressure and the relation of the fluid characteristics and pumpability of concrete is essential for concrete pumping performance for the rapid construction of super-tall buildings. In this study, a quantitative evaluation of concrete fluid characteristics and surface friction resistance was performed, applying different concrete mix proportions and pumping conditions. To achieve this, we developed a temporary horizontal pumping evaluation system to measure pipe pressure and surface friction characteristics, and performed an experiment to investigate the relations between concrete rheology characteristics and friction resistance in pipe. The experiment found that in terms of the rheology characteristics, plastic viscosity was reduced remarkably after pumping. As well, high regression between the surface friction and pressure gradient was confirmed. This means that it is possible to evaluate the friction resistance between concrete and pipe by means of a pumping system that includes a frictional resistance testing pipe. In addition, high regression between the plastic viscosity of concrete after pumping and friction resistance coefficient was confirmed. Finally, it is considered that pumping pressure can be predicted using the friction resistance coefficient derived in this study, and it has high regression.

Correlation Between Rheology Parameters and Slump Flow Based on Elapsed Time After Concrete Mixing (콘크리트 비빔 후 경과 시간에 따른 레올로지 정수와 슬럼프 플로의 상관 관계 분석)

  • Lee, Yu-Jeong;Kim, Young-Ki;Han, Dong-Yeop
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.53-54
    • /
    • 2022
  • This study is a basic study to establish the relationship between the conventional fluidity evaluation data of concrete and the rheology parameters. the slump flow and rheology parameters were measured according to the elapsed time after the concrete was mixed. The correlation between the slump flow and the rheology constant was analyzed and the effect of the elapsed time after concrete beating on the correlation between the two data was analyzed.

  • PDF

Rheology Control of Cement Paste for Applying ECC Produced with Slag Particles to Self-Consolidating and Shotcreting Process (고로슬래그 미분말이 혼입된 자기충전 및 숏크리트용 ECC의 개발을 위한 시멘트풀 레올로지 제어)

  • Park, Seung-Bum;Kim, Jeong-Su;Kim, Yun-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.67-75
    • /
    • 2008
  • An engineered cementitious composite produced with slag particles (Slag-ECC) had been developed based on micromechanical principle. Base grain ingredients were properly selected, and then the mixture proportion was optimized to be capable of achieving robust tensile ductility in the hardened state. The rheological design is performed in the present study by optimizing the amount of admixtures suitable for self-consolidating casting and shotcreting process in the fresh state. A special focus is placed on the rheological control which is directly applicable to the construction in field, using prepackaged product with all pulverized ingredients. To control the rheological properties of the composite, which possesses different fluid properties to facilitate two types of processing (i.e., self-consolidating and shotcreting processing), the viscosity change of the cement paste suspensions over time was initially investigated, and then the proper dosage of the admixtures in the cement paste was selected. The two types of mixture proportion were then optimized by self-consolidating & shotcreting tests. A series of self-consolidating and shotcreting tests demonstrated excellent self-consolidation property and sprayability of the Slag-ECC. The rheological properties altered through this approach were revealed to be effective in obtaining Slag-ECC hardened properties, represented by pseudo strain-hardening behavior in uniaxial tension, allowing the readily achievement of the desired function of the fresh Slag-ECC. These ductile composites with self-consolidating and shotcreting processing can be broadly utilized for a variety of applications, e.g., in strengthening seismic resistant structures with congested reinforcements, or in repairing deteriorated infrastructures by shotcreting process.

A Study on Rheology Properties of High Performance Wet-mix Shotcrete (고성능 습식 숏크리트의 레올로지에 관한 기초연구)

  • Choi, Sung-Yong;Yun, Kyong-Ku;Kim, Jin-Woung;Kim, Yong-Bin
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.4
    • /
    • pp.25-32
    • /
    • 2010
  • High performance shotcrete has been recently researched partly as a result of high consensus on high strength and durability. However, they are very initial step compared from the advanced countries. For instance, they has been mainly on high strength or durability without any consideration on pumpability and shootability which are very crucial on workability. The purpose of this dissertation was to make a high performance wet-mix shotcrete (high workability) which would solve the general problems of wet-mix process in Korea. For this, the main experimental variables were selected to be silica fume(0.0, 4.5, 9%), air entrained agent(0.0, 0.005%). Rheology with IBB rheometer was measured for evaluating pumpability and shootability as well as pump pressure, rebound rate and build-up thickness. The conclusions from a series of experiments were as follow: The results of analyzing the effects of AE agent and silica fume on rheology indicated that AE agent reduced both of flow resistance(G) and torque viscosity(H) and silica fume increased flow resistance (G) and reduced torque viscosity(H). An increase in the value of torque viscosity(H) produces an increase in the requried pumping pressure. These result indicated that the reduction of torque would work better at improving pumpability. And an increase flow resistance(G) improved shootability(increase build-up thickness and reduce rebound).

Study on Rheological Characteristics of Self-Compacting Concrete using Glass Bubble (글라스 버블을 사용한 자기 충전 콘크리트의 레올로지 특성에 관한 연구)

  • Lee, Han-Yong;Yoon, Seob;Seo, Tae-Seok
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2017.11a
    • /
    • pp.73-74
    • /
    • 2017
  • In this study, unlike high flowing concrete, using glass bubble to develop self-compacting concrete(hereinafter referred to as "SCC") with excellent filler performance by evaluating both flowability and yield stress, viscosity An experiment was conducted. Experimental results show that when 1 kg of glass bubbles are used, it is effective in stabilizing the physical properties of concrete, reducing the yield stress and viscosity.

  • PDF

Prediction of Rheological Properties of Asphalt Binders Through Transfer Learning of EfficientNet (EfficientNet의 전이학습을 통한 아스팔트 바인더의 레올로지적 특성 예측)

  • Ji, Bongjun
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.9 no.3
    • /
    • pp.348-355
    • /
    • 2021
  • Asphalt, widely used for road pavement, has different required physical properties depending on the environment to which the road is exposed. Therefore, it is essential to maximize the life of asphalt roads by evaluating the physical properties of asphalt according to additives and selecting an appropriate formulation considering road traffic and climatic environment. Dynamic shear rheometer(DSR) test is mainly used to measure resistance to rutting among various physical properties of asphalt. However, the DSR test has limitations in that the results are different depending on the experimental setting and can only be measured within a specific temperature range. Therefore, in this study, to overcome the limitations of the DSR test, the rheological characteristics were predicted by learning the images collected from atomic force microscopy. Images and rheology properties were trained through EfficientNet, one of the deep learning architectures, and transfer learning was used to overcome the limitation of the deep learning model, which require many data. The trained model predicted the rheological properties of the asphalt binder with high accuracy even though different types of additives were used. In particular, it was possible to train faster than when transfer learning was not used.

Influence of Rheological Properties of Lightweight Foamed Concrete on Preventing Foam Collapse (경량 기포 콘크리트의 레올로지 특성이 소포억제에 미치는 영향)

  • Lee, Hyang-Sun;Jeon, Jong-Woon;Jo, Mujin;Kee, Seong-Hoon;Han, Dongyeop
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.304-310
    • /
    • 2018
  • The aim of the research is to provide possibility of quality controlling by rheological properties for lightweight foamed concrete. The lightweight foamed concrete achieves its low density by containing air bubbles (foam) produced during the mixing process. Therefore, containing foamed volume during setting period is critical for the securing the performance as an insulating material. In this research, regarding foam collapse during the setting period, rheolgocial properties of fresh state lightweight foamed concrete were assessed to get its relationship with volume stability, or foam stability. For the experiment regarding foaming factors including mixing time, mix design of contents for materials, rheological properties of fresh state lightweight foamed concrete were tested with its density and settling depth. Based on the settling depth with various factors, relationship with rheological properties was analyzed, and especially, close relationship of plastic viscosity and settling depth was found. Therefore, from the results of this research, it is considered to contribute on suggesting a new approach of quality controlling for lightweight foamed concrete using rheological test method.

Improvement of Rheological Properties of Silica Composites Employing Response Surface Methodology (반응표면분석법을 이용한 실리카복합재료의 레올로지 속성 개선)

  • Yim, Gie-Hong;Yang, Seung-Nam;Kim, Nam-Ki
    • Polymer(Korea)
    • /
    • v.32 no.1
    • /
    • pp.19-25
    • /
    • 2008
  • The purpose of this study was improving the rheology properties of dentifrice by finding optimum binders polymer system which consists of carboxymethylcellulose (CMC), carbomer, and Mg/Al silicate. Response surface methodology (RSM) was employed to investigate the correlation between polymers and rheological properties of dentifrice and to optimize responses. Rheological properties were measured with oscillatory rheometer. As a result, it was identified that gel strength and yield stress were dependent on contents of CMC and carbomer and CMC caused long stringiness of dentifrice. And springness of dentifrice was dependent on contents of CMC and Mg/Al silicate. Optimum components proportion of polymers and silicate were obtained by responses optimization process. According to determined optimum components proportion, it was possible to observe a dentifrice with improved rheological properties.

Effect of Sucrose on the Rheological Properties of Com Starch (Sucrose 첨가가 옥수수전분의 레올로지 특성에 미치는 영향)

  • Chang, Yoon-Hyuk;Lim, Seung-Taik;Yoo, Byoung-Seung
    • Korean Journal of Food Science and Technology
    • /
    • v.33 no.6
    • /
    • pp.700-705
    • /
    • 2001
  • Sucrose첨가가 옥수수 전분호액의 레올로지 특성에 미치는 영향에 대하여 평가하였다. 전분호액은 sucrose 첨가에 관계없이 전단담화 비뉴턴 거동(n=0.37-0.58)을 나타내었으며, 또한 sucrose의 농도가 증가함에 따라 점조도지수$(K,\;K_h)$, 겉보기 점도$({\eta}_{a,100})$값은 크게 감소하였고 항복응력$({\sigma}_{oc},\;{\sigma}_h)$도 감소하는 경향을 나타내었다. 전분호액의 겉보기점도에 대한 온도의존성은 Arrhenius식에 의하여 높은 상관관계를 나타내었으며, 활성화에너지는 각각 10.80-15.59 kJ/mole을 나타내었고 농도가 증가함에 따라 감소하는 경향을 나타내었다. 적용된 주파수$({\omega})$ 범위에서 저장탄성률(G#)의 수치가 손실탄성률(G@)보다 높게 나타났으며 sucrose의 농도가 증가함에 따라 감소하여 탄성 및 점성 성질을 감소시켜 주었다. 이들 동적데이터로부터 전분호액은 sucrose 첨가에 의해 더욱 약한 겔과 같은 구조적 성질을 나타냄을 알 수 있었다. 그러므로 sucrose 첨가는 전분호액 내의 입자들의 재회합을 방해하여 전분호액의 레올로지 특성을 변화시킨다. Sucrose 30%를 첨가한 옥수수 전분호액을 제외한 모든 시료들은 이동인자$(shift\;factor,\;\alpha)$를 사용함으로써 Cox-Merz 중첩 원리에 잘 적용되었다.

  • PDF