• Title/Summary/Keyword: 레벨 감시

Search Result 86, Processing Time 0.018 seconds

A Study on the MS-WP Cryptographic Processor for Wireless Security Transmission Network among Nodes of Water-Processing Measurement-Control-Equipment (수처리 계측제어설비 노드들 간의 무선 안전 전송을 위한 MS-WP 암호 프로세서에 관한 연구)

  • Lee, Seon-Keun;Yu, Chool;Park, Jong-Deok
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.6 no.3
    • /
    • pp.381-387
    • /
    • 2011
  • Measurement controller that acquire and control and observe data from scattering sensors is organic with central control room. Therefore, measurement controller is efficient wireless network than wire network. But, serious problem is happened in security from outside if use wireless network. Therefore, this paper proposed suitable MS-WP cryptographic system to measurement control wireless network to augment network efficiency of measure controller. Result that implement proposed MS-WP cryptographic system by chip level and achieve a simulation, confirmed that 130% processing rate increase and system efficiency are increased double than AES algorithm. Proposed MS-WP cryptographic system augments security and is considered is suitable to measurement controller because that low power is possible and the processing speed is fast.

A Study on the Path Loss of Underwater Acoustic Channel Based on At-sea Experiment at the South Sea of Korea (남해 실해역 시험 기반 수중음향채널 경로손실에 관한 연구)

  • Kim, Min-Sang;Lee, Tae-Seok;Cho, Yong-Ho;Im, Tae-Ho;Ko, Hak-Lim
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.3
    • /
    • pp.405-411
    • /
    • 2020
  • Recently, studies on underwater communication, related to the development of underwater resources, disaster monitoring and defense, have been actively carried out. In the design of wireless communication systems, path loss is the most important information to derive a link budget that is required to guarantee communication reliability by calculating received power level for the given communication link. The underwater acoustic channel have different characteristics according to geographical location and relevant environmental factors such as water temperature, depth, wave height, algae, and turbidity. Subsequently, many research institutes aiming to develop underwater acoustic communication systems are researching actively on the underwater acoustic channels in various sea areas. In Korea, however, studies on the path loss of the acoustic channel are still insufficient. Therefore, in this study, the path loss of the acoustic channel are studied based on measurement data of the at-sea experiment conducted at Geohae-do, southern sea of Korea.

A Benchmark of Open Source Data Mining Package for Thermal Environment Modeling in Smart Farm(R, OpenCV, OpenNN and Orange) (스마트팜 열환경 모델링을 위한 Open source 기반 Data mining 기법 분석)

  • Lee, Jun-Yeob;Oh, Jong-wo;Lee, DongHoon
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2017.04a
    • /
    • pp.168-168
    • /
    • 2017
  • ICT 융합 스마트팜 내의 환경계측 센서, 영상 및 사양관리 시스템의 증가에도 불구하고 이들 장비에서 확보되는 데이터를 적절히 유효하게 활용하는 기술이 미흡한 실정이다. 돈사의 경우 가축의 복지수준, 성장 변화를 실시간으로 모니터링 및 예측할 수 있는 데이터 분석 및 모델링 기술 확보가 필요하다. 이를 위해선 가축의 생리적 변화 및 행동적 변화를 조기에 감지하고 가축의 복지수준을 실시간으로 감시하고 분석 및 예측 기술이 필요한데 이를 위한 대표적인 정보 통신 공학적 접근법 중에 하나가 Data mining 이다. Data mining에 대한 연구 수행에 필요한 다양한 소프트웨어 중에서 Open source로 제공이 되는 4가지 도구를 비교 분석하였다. 스마트 돈사 내에서 열환경 모델링을 목표로 한 데이터 분석에서 고려해야할 요인으로 데이터 분석 알고리즘 도출 시간, 시각화 기능, 타 라이브러리와 연계 기능 등을 중점 적으로 분석하였다. 선정된 4가지 분석 도구는 1) R(https://cran.r-project.org), 2) OpenCV(http://opencv.org), 3) OpenNN (http://www.opennn.net), 4) Orange(http://orange.biolab.si) 이다. 비교 분석을 수행한 운영체제는 Linux-Ubuntu 16.04.4 LTS(X64)이며, CPU의 클럭속도는 3.6 Ghz, 메모리는 64 Gb를 설치하였다. 개발언어 측면에서 살펴보면 1) R 스크립트, 2) C/C++, Python, Java, 3) C++, 4) C/C++, Python, Cython을 지원하여 C/C++ 언어와 Python 개발 언어가 상대적으로 유리하였다. 데이터 분석 알고리즘의 경우 소스코드 범위에서 라이브러리를 제공하는 경우 Cross-Platform 개발이 가능하여 여러 운영체제에서 개발한 결과를 별도의 Porting 과정을 거치지 않고 사용할 수 있었다. 빌트인 라이브러리 경우 순서대로 R 의 경우 가장 많은 수의 Data mining 알고리즘을 제공하고 있다. 이는 R 운영 환경 자체가 개방형으로 되어 있어 온라인에서 추가되는 새로운 라이브러리를 클라우드를 통하여 공유하기 때문인 것으로 판단되었다. OpenCV의 경우 영상 처리에 강점이 있었으며, OpenNN은 신경망학습과 관련된 라이브러리를 소스코드 레벨에서 공개한 것이 강점이라 할 수 있다. Orage의 경우 라이브러리 집합을 제공하는 것에 중점을 둔 다른 패키지와 달리 시각화 기능 및 망 구성 등 사용자 인터페이스를 통합하여 운영한 것이 강점이라 할 수 있다. 열환경 모델링에 요구되는 시간 복잡도에 대응하기 위한 부가 정보 처리 기술에 대한 연구를 수행하여 스마트팜 열환경 모델링을 실시간으로 구현할 수 있는 방안 연구를 수행할 것이다.

  • PDF

Multi-query Indexing Technique for Efficient Query Processing on Stream Data in Sensor Networks (센서 네트워크에서 스트림 데이터 질의의 효율적인 처리를 위한 다중 질의 색인 기법)

  • Lee, Min-Soo;Kim, Yearn-Jeong;Yoon, Hye-Jung
    • Journal of Korea Multimedia Society
    • /
    • v.10 no.11
    • /
    • pp.1367-1383
    • /
    • 2007
  • A sensor network consists of a network of sensors that can perform computation and also communicate with each other through wireless communication. Some important characteristics of sensor networks are that the network should be self administered and the power efficiency should be greatly considered due to the fact that it uses battery power. In sensor networks, when large amounts of various stream data is produced and multiple queries need to be processed simultaneously, the power efficiency should be maximized. This work proposes a technique to create an index on multiple monitoring queries so that the multi-query processing performance could be increased and the memory and power could be efficiently used. The proposed SMILE tree modifies and combines the ideas of spatial indexing techniques such as k-d trees and R+-trees. The k-d tree can divide the dimensions at each level, while the R+-tree improves the R-tree by dividing the space into a hierarchical manner and reduces the overlapping areas. By applying the SMILE tree on multiple queries and using it on stream data in sensor networks, the response time for finding an indexed query takes in some cases 50% of the time taken for a linear search to find the query.

  • PDF

An Integrated Operation/Evaluation System Development for Lane-Level Positioning Based on GNSS Networks (위성항법 기반 차로구분 정밀위치결정 인프라 운영/평가 시스템 개발)

  • Lee, Sangwoo;Im, Sunghyuk;Ahn, Jongsun;Son, Eunseong;Shin, Miri;Lee, Jung-Hoon;Heo, Moon-Beom
    • Journal of Advanced Navigation Technology
    • /
    • v.22 no.6
    • /
    • pp.591-601
    • /
    • 2018
  • This paper discusses methods to effectively operates and evaluates an infrastructure system for lane-level positioning based on satellite navigation. The lane-level positioning infrastructure provides correction information on range measurements with integrity information on the correction to a user with a single frequency (cheap) satellite navigation receiver in order to perform lane-level positioning and integrity monitoring on the position estimate. The architecture and configuration of the lane-level positioning system are described from the systematic level in order to provide a comprehensive insight of the system. The operation/evaluation system for the integrated infrastructure is then presented. The evaluation results of the real implemented system are provided. Based on the results, we discuss requirements to increase the system stability from the operation perspective.

Generative optical flow based abnormal object detection method using a spatio-temporal translation network

  • Lim, Hyunseok;Gwak, Jeonghwan
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.4
    • /
    • pp.11-19
    • /
    • 2021
  • An abnormal object refers to a person, an object, or a mechanical device that performs abnormal and unusual behavior and needs observation or supervision. In order to detect this through artificial intelligence algorithm without continuous human intervention, a method of observing the specificity of temporal features using optical flow technique is widely used. In this study, an abnormal situation is identified by learning an algorithm that translates an input image frame to an optical flow image using a Generative Adversarial Network (GAN). In particular, we propose a technique that improves the pre-processing process to exclude unnecessary outliers and the post-processing process to increase the accuracy of identification in the test dataset after learning to improve the performance of the model's abnormal behavior identification. UCSD Pedestrian and UMN Unusual Crowd Activity were used as training datasets to detect abnormal behavior. For the proposed method, the frame-level AUC 0.9450 and EER 0.1317 were shown in the UCSD Ped2 dataset, which shows performance improvement compared to the models in the previous studies.