• Title/Summary/Keyword: 레벨셋방법

Search Result 49, Processing Time 0.028 seconds

Sclera Segmentation for the Measurement of Conjunctival Injection (결막 충혈도 측정을 위한 공막 영상 분할)

  • Bae, Jang-Pyo;Kim, Kwang-Gi;Jeong, Chang-Bu;Yang, Hee-Kyung;Hwang, Jeong-Min
    • Journal of Korea Multimedia Society
    • /
    • v.13 no.8
    • /
    • pp.1142-1153
    • /
    • 2010
  • Conjunctival injection is the initial symptom of various eye diseases such as conjunctivitis, keratitis, or uveitis. The quantification of conjunctival injection may help the diagnosis and follow-up evaluation of various eye diseases. The size of the sclera is an important factor for the quantification of conjunctival injection. However, previous manual segmentation is time-consuming.Automatic segmentation is needed to extract the objective region of interest. This paper proposed a method based on the level set algorithm to segment the sclera from an anterior eye image. The initial model of the level set algorithm is calculated using the Lab color space, k-means algorithm and the geometric information. The level set algorithm was applied to the images in which the valley between the eyeball and skin was enhanced using the hessian analysis. This algorithm was tested with 52 images of the anterior eye segment. Results showed that the proposed method performs better than those with the level set algorithm using an arbitrary circle, or the region growing algorithm with color information. The proposed method for the segmentation of sclera may become an important component for the objective measurement of the conjunctival injection.

Topology Optimization of Shell Structures Using Adaptive Inner-Front(AIF) Level Set Method (적응적 내부 경계를 갖는 레벨셋 방법을 이용한 쉘 구조물의 위상최적설계)

  • Park, Kang-Soo;Youn, Sung-Kie
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.157-162
    • /
    • 2007
  • A new level set based topology optimization employing inner-front creation algorithm is presented. In the conventional level set based topology optimization, the optimum topology strongly depends on the initial level set distribution due to the incapability of inner-front creation during optimization process. In the present work, in this regard, an inner-front creation algorithm is proposed. in which the sizes. shapes. positions, and number of new inner-fronts during the optimization process can be globally and consistently identified by considering both the value of a given criterion for inner-front creation and the occupied volume (area) of material domain. To facilitate the inner-front creation process, the inner-front creation map which corresponds to the discrete valued criterion of inner-front creation is applied to the level set function. In order to regularize the design domain during the optimization process, the edge smoothing is carried out by solving the edge smoothing partial differential equation (PDE). Updating the level set function during the optimization process, in the present work, the least-squares finite element method (LSFEM) is employed. As demonstrative examples for the flexibility and usefulness of the proposed method. the level set based topology optimization considering lightweight design of 3D shell structure is carried out.

  • PDF

RANS Computation of Turbulent free Surface Flow around a Self Propelled KLNG Carrier (LNG 운반선의 자유수면을 포함한 자항상태 난류유동장의 수치해석)

  • Kim, Jin;Park, Il-Ryong;Kim, Kwang-Soo;Van, Suak-Ho
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.42 no.6 s.144
    • /
    • pp.583-592
    • /
    • 2005
  • The turbulent free surface flow around a self-propelled KRISO 138K LNG Carrier is numerically simulated using the finite volume based multi-block RANS code, WAVIS developed at HRISO. The realizable k-$\varepsilon$ turbulence model with a wail function is employed for the turbulence closure. The free surface is captured with the Level-Set method and body forces are used to model the effects of a propeller without resolving the detail blade flow. In order to obtain an accurate free surface solution and stable convergence, the computations are executed with a proper fine grid refinement around the free surface and with an adoption of implicit discretization scheme for the Level-Set formulation. The computed velocity vectors at the several stations and wave patterns show a good agreement with the experimental results measured at the KRISO towing tank.

Numerical Prediction of Ship Motions in Wave using RANS Method (RANS 방법을 이용한 파랑 중 선박운동 해석)

  • Park, Il-Ryong;Kim, Jin;Kim, Yoo-Chul;Kim, Kwang-Soo;Van, Suak-Ho;Suh, Sung-Bu
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.50 no.4
    • /
    • pp.232-239
    • /
    • 2013
  • This paper provides the structure of a Reynolds Averaged Navier-Stokes(RANS) based simulation method and its validation results for the ship motion problem. The motion information of the hull computed from the equations of motion is considered in the momentum equations as the relative fluid motions with respect to a non-inertial coordinates system. A finite volume method is used to solve the governing equations, while the free surface is captured by using a two-phase level-set method and the realizable k-${\varepsilon}$ model is used for turbulence closure. For the validation of the present numerical approach, the numerical results of the resistance and motion tests for DTMB 5415 at two ship speeds are compared against available experimental data.

A Study on Shape Registration Using Level-Set Model and Surface Registration Volume Rendering of 3-D Images (레밸 세트 모텔을 이용한 형태 추출과 3차원 영상의 표면 정합 볼륨 렌더링에 관한 연구)

  • 김태형;염동훈;주동현;김두영
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.3 no.4
    • /
    • pp.29-34
    • /
    • 2002
  • In this paper, we present a new geometric active contour model based on level set methods introduced by Osher and Sethian for detection of object boundaries or shape and we adopt anisotropic diffusion filtering method for removing noise from original image. In order to minimize the processing time, we use the narrow band method which allows us to perform calculations in the neighborhood of the contour and not in the whole image. Using anisotropic diffusion filtering for each slice, we have the result with reduced noise and extracted exact shape. Volume rendering operates on three-dimensional data, processes it, and transforms it into a simple two-dimensional image.

  • PDF

A Study on the Performance Transient Phenomenon at the Interface of a Dual Thrust Rocket Motor with Two Kinds Propellant (이종 추진제를 적용한 이중추력 로켓모터 계면에서의 성능 과도 현상에 관한 연구)

  • Kim, Kyungmoo;Lee, Kiyeon;Kim, Jeongeun
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.2
    • /
    • pp.79-87
    • /
    • 2021
  • In this study, we developed a method to predict/analyze the performance of a dual thrust rocket motor that has 2 kinds propellant charged in axial direction. When transitioning from the booster to the suspender stage, a transient phenomenon related to performance occurred at the interface. The causes and characteristics of the transient phenomenon were investigated by comparing them with the results of the combustion test. It was confirmed that the performance transient phenomenon is sensitively generated not only by the shape design between the propellants with different properties of the propellant, but also by errors in manufacturing due to the propellant curing shrinkage.

Numerical Analysis of Three-dimensional Sloshing Flow Using Least-square and Level-set Method (최소자승법과 Level-set 방법을 적용한 3차원 슬로싱 유동의 수치해석)

  • Jeon, Byoung Jin;Choi, Hyoung Gwon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.41 no.11
    • /
    • pp.759-765
    • /
    • 2017
  • In this study, a three-dimensional least-square, level-set-based two-phase flow code was developed for the simulation of three-dimensional sloshing problems using finite element discretization. The code was validated by solving some benchmark problems. The proposed method was found to provide improved results against other existing methods, by using a coarser mesh. The results of the numerical experiments conducted during the course of this study showed that the proposed method was both robust and accurate for the simulation of three-dimensional sloshing problems. Using a substantially coarse grid, historical results of the dynamic pressure at a selected position corresponded with existing experimental data. The pressure history with a finer grid was similar to that of a coarse grid; however, a fine grid provided higher peak pressures. The present method could be extended to the analysis of a sloshing problem in a complex geometrical configuration using unstructured meshes owing to the features of FEM.

A Hippocampus Segmentation in Brain MR Images using Level-Set Method (레벨 셋 방법을 이용한 뇌 MR 영상에서 해마영역 분할)

  • Lee, Young-Seung;Choi, Heung-Kook
    • Journal of Korea Multimedia Society
    • /
    • v.15 no.9
    • /
    • pp.1075-1085
    • /
    • 2012
  • In clinical research using medical images, the image segmentation is one of the most important processes. Especially, the hippocampal atrophy is helpful for the clinical Alzheimer diagnosis as a specific marker of the progress of Alzheimer. In order to measure hippocampus volume exactly, segmentation of the hippocampus is essential. However, the hippocampus has some features like relatively low contrast, low signal-to-noise ratio, discreted boundary in MRI images, and these features make it difficult to segment hippocampus. To solve this problem, firstly, We selected region of interest from an experiment image, subtracted a original image from the negative image of the original image, enhanced contrast, and applied anisotropic diffusion filtering and gaussian filtering as preprocessing. Finally, We performed an image segmentation using two level set methods. Through a variety of approaches for the validation of proposed hippocampus segmentation method, We confirmed that our proposed method improved the rate and accuracy of the segmentation. Consequently, the proposed method is suitable for segmentation of the area which has similar features with the hippocampus. We believe that our method has great potential if successfully combined with other research findings.

Analysis of RTM Process Using the Extended Finite Element Method (확장 유한 요소 법을 적용한 RTM 공정 해석)

  • Jung, Yeonhee;Kim, Seung Jo;Han, Woo-Suck
    • Composites Research
    • /
    • v.26 no.6
    • /
    • pp.363-372
    • /
    • 2013
  • Numerical simulation for Resin Transfer Molding manufacturing process is attempted by using the eXtended Finite Element Method (XFEM) combined with the level set method. XFEM allows to obtaining a good numerical precision of the pressure near the resin flow front, where its gradient is discontinuous. The enriched shape functions of XFEM are derived by using the level set values so as to correctly describe the interpolation with the resin flow front. In addition, the level set method is used to transport the resin flow front at each time step during the mold filling. The level set values are calculated by an implicit characteristic Galerkin FEM. The multi-frontal solver of IPSAP is adopted to solve the system. This work is validated by comparing the obtained results with analytic solutions. Moreover, a localization method of XFEM and level set method is proposed to increase the computing efficiency. The computation domain is reduced to the small region near the resin flow front. Therefore, the total computing time is strongly reduced by it. The efficiency test is made with a simple channel flow model. Several application examples are analyzed to demonstrate ability of this method.