• Title/Summary/Keyword: 레귤레이터

Search Result 186, Processing Time 0.028 seconds

Development of Precision Spraying System Using Machine Vision and DGPS (기계시각과 DGPS를 이용한 정밀방제 시스템 개발)

  • 조성인;정재연;김유용;남기찬
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2002.02a
    • /
    • pp.426-431
    • /
    • 2002
  • 본 연구에서는 DGPS와 칼라 CCD 카메라를 이용한 잡초의 검출을 위한 영상처리 시스템과 분무시스템을 개발하고 통합하여 정밀 방제 시스템을 개발하였다. 방제 요구부위에 실제 정밀한 살포를 위해 펌프, 노즐 및 레귤레이터로 구성된 장치를 구성하고 컨트롤러를 제작 통합하여 분무 시스템을 개발하였다. 개별 노즐별로 ON/OFF에 의한 변량 살포가 가능하도록 각 노즐별로 레귤레이터를 장착하였다. 정밀 방제용 이동식 차량을 제작하고 노즐별로 ON-OFF 제어가 가능한 살포장치를 부착하였으며, 알고리즘을 통합하여 정밀방제 시스템을 개발하였다. 개발한 시스템은 영상 획득 $\longrightarrow$ DGPS 좌표 획득 $\longrightarrow$ 자이로 컴파스 데이터 획득 $\longrightarrow$ 데이터베이스로부터 작물의 위치정보 획득 $\longrightarrow$ 영상처리를 이용한 방제요구부위 검출 $\longrightarrow$ 노즐별 개별 방제 작업이 순서적으로 반복해서 진행되었다. 완성된 시스템의 성능 및 안정성을 평가하기 위해서 서울대학교 부속 과수원에서 무를 대상으로 개발된 시스템을 검증하였다. 개발된 시스템은 RS-232C 통신을 이용하여 데이터의 전송을 수행할 수 있었으며, 순차적인 진행이 가능하도록 통합 프로그램을 제작하였으며, 검증 결과 정밀방제의 가능성을 보였다.

  • PDF

Analysis of Line Regulator Valve and Ratio Control Valve Considering CVT Shift Dynamics (CVT 변속 동역학을 고려한 라인 레귤레이터 및 변속비 제어 밸브의 응답 특성 해석)

  • 정근수;김현수
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.8 no.2
    • /
    • pp.81-91
    • /
    • 2000
  • Dynamic models of line regulator valve(LRV) and ratio control valve (RCV) are obtained for an electronic controlled CVT. LRV and RCV are operated by variable force solenoid(VFS). Considering the CVT shift dynamics, oil pump's efficiency and saturation characteristics of VFS, simulations are performed and compared with test results. Simulation results are in good agreement with the experiments, which shows the validity of the dynamic models of LRV and RCV obtained. In addition, the effects of the orifice size in the exhaust port of RCV are investigated. Simulation results show that as the orifice size decreases, the residual pressure in the primary actuator increases which insures the large torque transmission capacity, meanwhile the duration time for the downshift increases.

  • PDF

Prediction of Lift Performance of Automotive Glass Using Finite Element Analysis (유한요소해석을 통한 자동차용 글라스의 승강성능 예측)

  • Moon, Hyung-Il;Kim, Heon-Young;Choi, Cheon;Lee, In-Heok;Kim, Do-Hyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.11
    • /
    • pp.1749-1755
    • /
    • 2010
  • The performance of power window system was decided by driving characteristics of the window regulator part and reaction by the glass run. The performance of power window system usually has been predicted by experimental methods. In this paper, an analytical method using the explicit code was suggested to overcome the limit of the experimental methods. The friction coefficient of glass run was obtained by the friction test at various conditions and the Mooney-Rivlin model was used. Also, a mechanism of window regulator consisted of the fast belt system and the slip ring elements. And, we conducted the analysis considering characteristic of a motor and obtained the lifting speed of automotive glass with high reliability

A Capacitorless Low-Dropout Regulator With Enhanced Response Time (응답 시간을 향상 시킨 외부 커패시터가 없는 Low-Dropout 레귤레이터 회로)

  • Yeo, Jae-Jin;Roh, Jeong-Jin
    • Journal of IKEEE
    • /
    • v.19 no.4
    • /
    • pp.506-513
    • /
    • 2015
  • In this paper, an output-capacitorless, low-dropout (LDO) regulator is designed, which consumes $4.5{\mu}A$ quiescent current. Proposed LDO regulator is realized using two amplifier for good load regulation and fast response time, which provide high gain, high bandwidth, and high slew rate. In addition, a one-shot current boosting circuit is added for current control to charge and discharge the parasitic capacitance at the pass transistor gate. As a result, response time is improved during load-current transition. The designed circuit is implemented through a $0.11-{\mu}m$ CMOS process. We experimentally verify output voltage fluctuation of 260mV and recovery time of $0.8{\mu}s$ at maximum load current 200mA.

A dual-loop boost-converter LED driver IC with temperature compensation (온도 보상 및 듀얼 루프를 이용한 부스트 컨버터 LED 드라이버 IC)

  • Park, Ji-Hoon;Yoon, Seong-Jin;Hwang, In-Chul
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.20 no.6
    • /
    • pp.29-36
    • /
    • 2015
  • This paper presents an LED backlight driver IC consisting of three linear current regulators and an output-voltage regulation loop with a self-adjustable reference voltage. In the proposed LED driver, the output voltage is controlled by dual feedback loops. The first loop senses and controls the output voltage, and the second loop senses the voltage drop of the linear current regulator and adjusts the reference voltage. With these feedback loops, the voltage drop of the linear current regulator is maintained at a minimum value, at which the driver efficiency is maximized. The output of the driver is a three-channel LED setup with four LEDs in each channel. The luminance is adjusted by the PWM dimming signal. The proposed driver is designed by a $0.35-{\mu}m$ 60-V high-voltage process, resulting in an experimental maximum efficiency of approximately 85%.

Design of a On-chip LDO regulator with enhanced transient response characteristics by parallel error amplifiers (병렬 오차 증폭기 구조를 이용하여 과도응답특성을 개선한 On-chip LDO 레귤레이터 설계)

  • Son, Hyun-Sik;Lee, Min-Ji;Kim, Nam Tae;Song, Han-Jung
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.16 no.9
    • /
    • pp.6247-6253
    • /
    • 2015
  • This paper presents the transient-response improved LDO regulator based on parallel error amplifiers. The proposed LDO regulator consists of an error amplifier (E/A1) which has a high gain and narrow bandwidth and a second amplifier (E/A2) which has low gain and wide bandwidth. These amplifiers are in parallel structure. Also, to improve the transient-response properties and slew-rate, some circuit block is added. Using pole-splitting technique, an external capacitor is reduced in a small on-chip size which is suitable for mobile devices. The proposed LDO has been designed and simulated using a Megna/Hynix $0.18{\mu}m$ CMOS parameters. Chip layout size is $500{\mu}m{\times}150{\mu}m$. Simulation results show 2.5 V output voltage and 100 mA load current in an input condition of 2.7 V ~ 3.3 V. Regulation Characteristic presents voltage variation of 26.1 mV and settling time of 510 ns from 100mA to 0 mA. Also, the proposed circuit has been shown voltage variation of 42.8 mV and settling time of 408 ns from 0 mA to 100 mA.

Implementation and Characteristic Analysis of DC/DC Voltage Regulator for Operation Efficiency Improvement in PV system (태양광발전의 운용효율 향상을 위한 DC/DC 전압 레귤레이터의 구현 및 특성분석)

  • Kim, Chanhyeok;Choi, Sungsik;Kang, Minkwan;Jung, Youngmun;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.4
    • /
    • pp.201-208
    • /
    • 2017
  • Recently, the installation of photovoltaic(PV) systems has been increasing due to the worldwide interest in eco-friendly and abundant solar energy. On the other hand, a PV system has approximately 25% power loss while the energy generated from solar cells is transformed to the power coupling point through a power conversion system (DC/AC). If the output voltage of a string in the PV system is lower than the operating range of the inverter when a part of module in the string has a shadow due to weather conditions, the string is not synchronized and the whole efficiency of output power in a PV system may be reduced significantly. Therefore, to overcome this problem, this paper proposes a novel control method to compensate for the lower voltage by introducing a DC/DC voltage regulator for each string in a PV system, which adopts a concept for MPPT (Maximum Power Point Tracking) control function using the P&O algorithm and adopts constant voltage control method used in an existing inverter. This paper also implements a 2kW DC/DC voltage regulator based on the proposed algorithm and performs a variety of scenario-based experiments. From the simulation result, it was confirmed that the operation efficiency in the proposed method is improved compared to the existing method.