• Title/Summary/Keyword: 러프 집합

Search Result 96, Processing Time 0.02 seconds

Design and Evaluation of a Weighted Intrusion Detection Method for VANETs (VANETs을 위한 가중치 기반 침입탐지 방법의 설계 및 평가)

  • Oh, Sun-Jin
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.11 no.3
    • /
    • pp.181-188
    • /
    • 2011
  • With the rapid proliferation of wireless networks and mobile computing applications, the landscape of the network security has greatly changed recently. Especially, Vehicular Ad Hoc Networks maintaining network topology with vehicle nodes of high mobility are self-organizing Peer-to-Peer networks that typically have short-lasting and unstable communication links. VANETs are formed with neither fixed infrastructure, centralized administration, nor dedicated routing equipment, and vehicle nodes are moving, joining and leaving the network with very high speed over time. So, VANET-security is very vulnerable for the intrusion of malicious and misbehaving nodes in the network, since VANETs are mostly open networks, allowing everyone connection without centralized control. In this paper, we propose a weighted intrusion detection method using rough set that can identify malicious behavior of vehicle node's activity and detect intrusions efficiently in VANETs. The performance of the proposed scheme is evaluated by a simulation study in terms of intrusion detection rate and false alarm rate for the threshold of deviation number ${\epsilon}$.

Context-based Dynamic Access Control Model for u-healthcare and its Application (u-헬스케어를 위한 상황기반 동적접근 제어 모델 및 응용)

  • Jeong, Chang-Won;Kim, Dong-Ho;Joo, Su-Chong
    • The KIPS Transactions:PartC
    • /
    • v.15C no.6
    • /
    • pp.493-506
    • /
    • 2008
  • In this paper we suggest dynamic access control model based on context satisfied with requirement of u-healthcare environment through researching the role based access control model. For the dynamic security domain management, we used a distributed object group framework and context information for dynamic access control used the constructed database. We defined decision rule by knowledge reduction in decision making table, and applied this rule in our model as a rough set theory. We showed the executed results of context based dynamic security service through u-healthcare application which is based on distributed object group framework. As a result, our dynamic access control model provides an appropriate security service according to security domain, more flexible access control in u-healthcare environment.

Knowledge Extraction from Affective Data using Rough Sets Model and Comparison between Rough Sets Theory and Statistical Method (러프집합이론을 중심으로 한 감성 지식 추출 및 통계분석과의 비교 연구)

  • Hong, Seung-Woo;Park, Jae-Kyu;Park, Sung-Joon;Jung, Eui-S.
    • Journal of the Ergonomics Society of Korea
    • /
    • v.29 no.4
    • /
    • pp.631-637
    • /
    • 2010
  • The aim of affective engineering is to develop a new product by translating customer affections into design factors. Affective data have so far been analyzed using a multivariate statistical analysis, but the affective data do not always have linear features assumed under normal distribution. Rough sets model is an effective method for knowledge discovery under uncertainty, imprecision and fuzziness. Rough sets model is to deal with any type of data regardless of their linearity characteristics. Therefore, this study utilizes rough sets model to extract affective knowledge from affective data. Four types of scent alternatives and four types of sounds were designed and the experiment was performed to look into affective differences in subject's preference on air conditioner. Finally, the purpose of this study also is to extract knowledge from affective data using rough sets model and to figure out the relationships between rough sets based affective engineering method and statistical one. The result of a case study shows that the proposed approach can effectively extract affective knowledge from affective data and is able to discover the relationships between customer affections and design factors. This study also shows similar results between rough sets model and statistical method, but it can be made more valuable by comparing fuzzy theory, neural network and multivariate statistical methods.

The Integrated Methodology of Rough Set Theory and Artificial Neural Network for Business Failure Prediction (도산 예측을 위한 러프집합이론과 인공신경망 통합방법론)

  • Kim, Chang-Yun;Ahn, Byeong-Seok;Cho, Sung-Sik;Kim, Soung-Hie
    • Asia pacific journal of information systems
    • /
    • v.9 no.4
    • /
    • pp.23-40
    • /
    • 1999
  • This paper proposes a hybrid intelligent system that predicts the failure of firms based on the past financial performance data, combining neural network and rough set approach, We can get reduced information table, which implies that the number of evaluation criteria such as financial ratios and qualitative variables and objects (i.e., firms) is reduced with no information loss through rough set approach. And then, this reduced information is used to develop classification rules and train neural network to infer appropriate parameters. Through the reduction of information table, it is expected that the performance of the neural network improve. The rules developed by rough sets show the best prediction accuracy if a case does match any of the rules. The rationale of our hybrid system is using rules developed by rough sets for an object that matches any of the rules and neural network for one that does not match any of them. The effectiveness of our methodology was verified by experiments comparing traditional discriminant analysis and neural network approach with our hybrid approach. For the experiment, the financial data of 2,400 Korean firms during the period 1994-1996 were selected, and for the validation, k-fold validation was used.

  • PDF

Developing a Trading System using the Relative Value between KOSPI 200 and S&P 500 Stock Index Futures (KOSPI 200과 S&P 500 주가지수 선물의 상대적 가치를 이용한 거래시스템 개발)

  • Kim, Young-Min;Lee, Suk-Jun
    • Management & Information Systems Review
    • /
    • v.33 no.1
    • /
    • pp.45-63
    • /
    • 2014
  • A trading system is a computer trading program that automatically submits trades to an exchange. Mechanical a trading system to execute trade is spreading in the stock market. However, a trading system to trade a single asset might occur instability of the profit because payoff of this system is determined a asset movement. Therefore, it is necessary to develop a trading system that is trade two assets such as a pair trading that is to sell overvalued assets and buy the undervalued ones. The aim of this study is to propose a relative value based trading system designed to yield stable and profitable profits regardless of market conditions. In fact, we propose a procedure for building a trading system that is based on the rough set analysis of indicators derived from a price ratio between two assets. KOSPI 200 index futures and S&P 500 index futures are used as a data for evaluation of the proposed trading system. We intend to examine the usefulness of this model through an empirical study.

  • PDF

Location Service Modeling of Distributed GIS for Replication Geospatial Information Object Management (중복 지리정보 객체 관리를 위한 분산 지리정보 시스템의 위치 서비스 모델링)

  • Jeong, Chang-Won;Lee, Won-Jung;Lee, Jae-Wan;Joo, Su-Chong
    • The KIPS Transactions:PartD
    • /
    • v.13D no.7 s.110
    • /
    • pp.985-996
    • /
    • 2006
  • As the internet technologies develop, the geographic information system environment is changing to the web-based service. Since geospatial information of the existing Web-GIS services were developed independently, there is no interoperability to support diverse map formats. In spite of the same geospatial information object it can be used for various proposes that is duplicated in GIS separately. It needs intelligent strategies for optimal replica selection, which is identification of replication geospatial information objects. And for management of replication objects, OMG, GLOBE and GRID computing suggested related frameworks. But these researches are not thorough going enough in case of geospatial information object. This paper presents a model of location service, which is supported for optimal selection among replication and management of replication objects. It is consist of tree main services. The first is binding service which can save names and properties of object defined by users according to service offers and enable clients to search them on the service of offers. The second is location service which can manage location information with contact records. And obtains performance information by the Load Sharing Facility on system independently with contact address. The third is intelligent selection service which can obtain basic/performance information from the binding service/location service and provide both faster access and better performance characteristics by rules as intelligent model based on rough sets. For the validity of location service model, this research presents the processes of location service execution with Graphic User Interface.