• Title/Summary/Keyword: 랜덤포레스트

Search Result 315, Processing Time 0.021 seconds

Learning data preprocessing technique for improving indoor positioning performance based on machine learning (기계학습 기반의 실내 측위 성능 향상을 위한 학습 데이터 전처리 기법)

  • Kim, Dae-Jin;Hwang, Chi-Gon;Yoon, Chang-Pyo
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.11
    • /
    • pp.1528-1533
    • /
    • 2020
  • Recently, indoor location recognition technology using Wi-Fi fingerprints has been applied and operated in various industrial fields and public services. Along with the interest in machine learning technology, location recognition technology based on machine learning using wireless signal data around a terminal is rapidly developing. At this time, in the process of collecting radio signal data required for machine learning, the accuracy of location recognition is lowered due to distorted or unsuitable data for learning. In addition, when location recognition is performed based on data collected at a specific location, a problem occurs in location recognition at surrounding locations that are not included in the learning. In this paper, we propose a learning data preprocessing technique to obtain an improved position recognition result through the preprocessing of the collected learning data.

Robust Estimation of Hand Poses Based on Learning (학습을 이용한 손 자세의 강인한 추정)

  • Kim, Sul-Ho;Jang, Seok-Woo;Kim, Gye-Young
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.23 no.12
    • /
    • pp.1528-1534
    • /
    • 2019
  • Recently, due to the popularization of 3D depth cameras, new researches and opportunities have been made in research conducted on RGB images, but estimation of human hand pose is still classified as one of the difficult topics. In this paper, we propose a robust estimation method of human hand pose from various input 3D depth images using a learning algorithm. The proposed approach first generates a skeleton-based hand model and then aligns the generated hand model with three-dimensional point cloud data. Then, using a random forest-based learning algorithm, the hand pose is strongly estimated from the aligned hand model. Experimental results in this paper show that the proposed hierarchical approach makes robust and fast estimation of human hand posture from input depth images captured in various indoor and outdoor environments.

Ensemble Machine Learning Model Based YouTube Spam Comment Detection (앙상블 머신러닝 모델 기반 유튜브 스팸 댓글 탐지)

  • Jeong, Min Chul;Lee, Jihyeon;Oh, Hayoung
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.24 no.5
    • /
    • pp.576-583
    • /
    • 2020
  • This paper proposes a technique to determine the spam comments on YouTube, which have recently seen tremendous growth. On YouTube, the spammers appeared to promote their channels or videos in popular videos or leave comments unrelated to the video, as it is possible to monetize through advertising. YouTube is running and operating its own spam blocking system, but still has failed to block them properly and efficiently. Therefore, we examined related studies on YouTube spam comment screening and conducted classification experiments with six different machine learning techniques (Decision tree, Logistic regression, Bernoulli Naive Bayes, Random Forest, Support vector machine with linear kernel, Support vector machine with Gaussian kernel) and ensemble model combining these techniques in the comment data from popular music videos - Psy, Katy Perry, LMFAO, Eminem and Shakira.

Evaluation of Surrogate Monitoring Parameters for SS and T-P Using Multiple Linear Regression and Random Forest (다중 선형 회귀 분석과 랜덤 포레스트를 이용한 SS, T-P 대리모니터링 기법 평가)

  • Jeung, Minhyuk;Beom, Jina;Choi, Dongho;Kim, Young-joo;Her, Younggu;Yoon, Kwangsik
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.2
    • /
    • pp.51-60
    • /
    • 2021
  • Effective nonpoint source (NPS) pollution management requires frequent water quality monitoring, which is, however, often costly to be implemented in practice. Statistical techniques and machine learning methods allow us to identify and focus on fundamental environmental variables that have close relationships with NPS pollutants of interest. This study developed surrogate models to predict the concentrations of suspended sediment (SS) and total phosphorus (T-P) from turbidity and runoff discharge rates using multiple linear regression (MLR) and random forest (RF) methods. The RF models provided acceptable performance in predicting SS and T-P, especially when runoff discharge rates were high. The RF models outperformed the MLR models in all the cases. Such finding highlights the potential of RF techniques and models as a tool to identify fundamental environmental variables that are measured in relatively inexpensive ways or freely available but still able to provide information required to quantify the concentrations of NP S pollutants. The analysis of relative importance rates showed that the temporal variations of SS and T-P concentrations could be more effectively explained by that of turbidity than runoff discharge rate. This study demonstrated that the advanced statistical techniques such as machine learning could help to improve the efficiency of NPS pollutants monitoring.

Automated Scoring of Argumentation Levels and Analysis of Argumentation Patterns Using Machine Learning (기계 학습을 활용한 논증 수준 자동 채점 및 논증 패턴 분석)

  • Lee, Manhyoung;Ryu, Suna
    • Journal of The Korean Association For Science Education
    • /
    • v.41 no.3
    • /
    • pp.203-220
    • /
    • 2021
  • We explored the performance improvement method of automated scoring for scientific argumentation. We analyzed the pattern of argumentation using automated scoring models. For this purpose, we assessed the level of argumentation for student's scientific discourses in classrooms. The dataset consists of four units of argumentation features and argumentation levels for episodes. We utilized argumentation clusters and n-gram to enhance automated scoring accuracy. We used the three supervised learning algorithms resulting in 33 automatic scoring models. As a result of automated scoring, we got a good scoring accuracy of 77.59% on average and up to 85.37%. In this process, we found that argumentation cluster patterns could enhance automated scoring performance accuracy. Then, we analyzed argumentation patterns using the model of decision tree and random forest. Our results were consistent with the previous research in which justification in coordination with claim and evidence determines scientific argumentation quality. Our research method suggests a novel approach for analyzing the quality of scientific argumentation in classrooms.

A Study on Building an Integrated Model of App Performance Analysis and App Review Sentiment Analysis (앱 이용실적과 앱 리뷰 감성분석의 통합적 모델 구축에 관한 연구)

  • Kim, Dongwook;Kim, Sungbum
    • The Journal of the Korea Contents Association
    • /
    • v.22 no.1
    • /
    • pp.58-73
    • /
    • 2022
  • The purpose of this study is to construct a predictable estimation model that reflects the relationship between the variables of mobile app performance and to verify how app reviews affect app performance. In study 1 and 2, the relationship between app performance indicators was derived using correlation analysis and random forest regression estimation of machine learning, and app performance estimation modeling was performed. In study 3, sentiment scores for app reviews were by using sentiment analysis of text mining, and it was found that app review sentiment scores have an effect one lag ahead of the number of daily installations of apps when using multivariate time series analysis. By analyzing the dissatisfaction and needs raised by app performance indicators and reviews of apps, companies can improve their apps in a timely manner and derive the timing and direction of marketing promotions.

Machine Learning-based Detection of DoS and DRDoS Attacks in IoT Networks

  • Yeo, Seung-Yeon;Jo, So-Young;Kim, Jiyeon
    • Journal of the Korea Society of Computer and Information
    • /
    • v.27 no.7
    • /
    • pp.101-108
    • /
    • 2022
  • We propose an intrusion detection model that detects denial-of-service(DoS) and distributed reflection denial-of-service(DRDoS) attacks, based on the empirical data of each internet of things(IoT) device by training system and network metrics that can be commonly collected from various IoT devices. First, we collect 37 system and network metrics from each IoT device considering IoT attack scenarios; further, we train them using six types of machine learning models to identify the most effective machine learning models as well as important metrics in detecting and distinguishing IoT attacks. Our experimental results show that the Random Forest model has the best performance with accuracy of over 96%, followed by the K-Nearest Neighbor model and Decision Tree model. Of the 37 metrics, we identified five types of CPU, memory, and network metrics that best imply the characteristics of the attacks in all the experimental scenarios. Furthermore, we found out that packets with higher transmission speeds than larger size packets represent the characteristics of DoS and DRDoS attacks more clearly in IoT networks.

Recognition of Indoor and Outdoor Exercising Activities using Smartphone Sensors and Machine Learning (스마트폰 센서와 기계학습을 이용한 실내외 운동 활동의 인식)

  • Kim, Jaekyung;Ju, YeonHo
    • Journal of Creative Information Culture
    • /
    • v.7 no.4
    • /
    • pp.235-242
    • /
    • 2021
  • Recently, many human activity recognition(HAR) researches using smartphone sensor data have been studied. HAR can be utilized in various fields, such as life pattern analysis, exercise measurement, and dangerous situation detection. However researches have been focused on recognition of basic human behaviors or efficient battery use. In this paper, exercising activities performed indoors and outdoors were defined and recognized. Data collection and pre-processing is performed to recognize the defined activities by SVM, random forest and gradient boosting model. In addition, the recognition result is determined based on voting class approach for accuracy and stable performance. As a result, the proposed activities were recognized with high accuracy and in particular, similar types of indoor and outdoor exercising activities were correctly classified.

An Analysis of the Key Factors Affecting Apartment Sales Price in Gwangju, South Korea (광주광역시 아파트 매매가 영향요인 분석)

  • Lim, Sung Yeon;Ko, Chang Wan;Jeong, Young-Seon
    • Smart Media Journal
    • /
    • v.11 no.3
    • /
    • pp.62-73
    • /
    • 2022
  • Researches on the prediction of domestic apartment sales price have been continuously conducted, but it is not easy to accurately predict apartment prices because various characteristics are compounded. Prior to predicting apartment sales price, the analysis of major factors, influencing on sale prices, is of paramount importance to improve the accuracy of sales price. Therefore, this study aims to analyze what are the factors that affect the apartment sales price in Gwangju, which is currently showing a steady increase rate. With 6 years of Gwangju apartment transaction price and various social factor data, several maching learning techniques such as multiple regression analysis, random forest, and deep artificial neural network algorithms are applied to identify major factors in each model. The performances of each model are compared with RMSE (Root Mean Squared Error), MAE (Mean Absolute Error) and R2 (coefficient of determination). The experiment shows that several factors such as 'contract year', 'applicable area', 'certificate of deposit', 'mortgage rate', 'leading index', 'producer price index', 'coincident composite index' are analyzed as main factors, affecting the sales price.

Adversarial Example Detection and Classification Model Based on the Class Predicted by Deep Learning Model (데이터 예측 클래스 기반 적대적 공격 탐지 및 분류 모델)

  • Ko, Eun-na-rae;Moon, Jong-sub
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.31 no.6
    • /
    • pp.1227-1236
    • /
    • 2021
  • Adversarial attack, one of the attacks on deep learning classification model, is attack that add indistinguishable perturbations to input data and cause deep learning classification model to misclassify the input data. There are various adversarial attack algorithms. Accordingly, many studies have been conducted to detect adversarial attack but few studies have been conducted to classify what adversarial attack algorithms to generate adversarial input. if adversarial attacks can be classified, more robust deep learning classification model can be established by analyzing differences between attacks. In this paper, we proposed a model that detects and classifies adversarial attacks by constructing a random forest classification model with input features extracted from a target deep learning model. In feature extraction, feature is extracted from a output value of hidden layer based on class predicted by the target deep learning model. Through Experiments the model proposed has shown 3.02% accuracy on clean data, 0.80% accuracy on adversarial data higher than the result of pre-existing studies and classify new adversarial attack that was not classified in pre-existing studies.