• Title/Summary/Keyword: 랜덤탐색

Search Result 97, Processing Time 0.027 seconds

A Optimization Study of UAV Path Planning Generation based-on Rapid-exploring Random Tree Method (급속탐색랜덤트리기법 기반의 무인 비행체 경로계획생성 최적화 연구)

  • Jae-Hwan Bong;Seong-Kyun Jeong
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.18 no.5
    • /
    • pp.981-988
    • /
    • 2023
  • As the usage of unmanned aerial vehicles expands, the development and the demand of related technologies are increasing. As the frequency of operation increases and the convenience of operation is emphasized, the importance of related autonomous flight technology is also highlighted. Establishing a path plan to reach the destination in autonomous flight of an unmanned aerial vehicle is important in guidance and control, and a technology for automatically generating path plan is required in order to maximize the effect of unmanned aerial vehicle. In this study, the optimization research of path planning using rapid-exploring random tree method was performed for increasing the effectiveness of autonomous operation. The path planning optimization method considering the characteristics of the unmanned aerial vehicle is proposed. In order to achieve indexes such as optimal distance, shortest time, and passage of mission points, the path planning was optimized in consideration of the mission goals and dynamic characteristics of the unmanned aerial vehicle. The proposed methods confirmed their applicability to the generation of path planning for unmanned aerial vehicles through performance verification for obstacle situations.

Area-Based Q-learning Algorithm to Search Target Object of Multiple Robots (다수 로봇의 목표물 탐색을 위한 Area-Based Q-learning 알고리즘)

  • Yoon, Han-Ul;Sim, Kwee-Bo
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.15 no.4
    • /
    • pp.406-411
    • /
    • 2005
  • In this paper, we present the area-based Q-learning to search a target object using multiple robot. To search the target in Markovian space, the robots should recognize their surrounding at where they are located and generate some rules to act upon by themselves. Under area-based Q-learning, a robot, first of all, obtains 6-distances from itself to environment by infrared sensor which are hexagonally allocated around itself. Second, it calculates 6-areas with those distances then take an action, i.e., turn and move toward where the widest space will be guaranteed. After the action is taken, the value of Q will be updated by relative formula at the state. We set up an experimental environment with five small mobile robots, obstacles, and a target object, and tried to search for a target object while navigating in a unknown hallway where some obstacles were placed. In the end of this paper, we presents the results of three algorithms - a random search, area-based action making (ABAM), and hexagonal area-based Q-teaming.

Feature Selection for Classification of Mass Spectrometric Proteomic Data Using Random Forest (단백체 스펙트럼 데이터의 분류를 위한 랜덤 포리스트 기반 특성 선택 알고리즘)

  • Ohn, Syng-Yup;Chi, Seung-Do;Han, Mi-Young
    • Journal of the Korea Society for Simulation
    • /
    • v.22 no.4
    • /
    • pp.139-147
    • /
    • 2013
  • This paper proposes a novel method for feature selection for mass spectrometric proteomic data based on Random Forest. The method includes an effective preprocessing step to filter a large amount of redundant features with high correlation and applies a tournament strategy to get an optimal feature subset. Experiments on three public datasets, Ovarian 4-3-02, Ovarian 7-8-02 and Prostate shows that the new method achieves high performance comparing with widely used methods and balanced rate of specificity and sensitivity.

A Bayesian Sampling Algorithm for Evolving Random Hypergraph Models Representing Higher-Order Correlations (고차상관관계를 표현하는 랜덤 하이퍼그래프 모델 진화를 위한 베이지안 샘플링 알고리즘)

  • Lee, Si-Eun;Lee, In-Hee;Zhang, Byoung-Tak
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.3
    • /
    • pp.208-216
    • /
    • 2009
  • A number of estimation of distribution algorithms have been proposed that do not use explicitly crossover and mutation of traditional genetic algorithms, but estimate the distribution of population for more efficient search. But because it is not easy to discover higher-order correlations of variables, lower-order correlations are estimated most cases under various constraints. In this paper, we propose a new estimation of distribution algorithm that represents higher-order correlations of the data and finds global optimum more efficiently. The proposed algorithm represents the higher-order correlations among variables by building random hypergraph model composed of hyperedges consisting of variables which are expected to be correlated, and generates the next population by Bayesian sampling algorithm Experimental results show that the proposed algorithm can find global optimum and outperforms the simple genetic algorithm and BOA(Bayesian Optimization Algorithm) on decomposable functions with deceptive building blocks.

Comparison of data mining methods with daily lens data (데일리 렌즈 데이터를 사용한 데이터마이닝 기법 비교)

  • Seok, Kyungha;Lee, Taewoo
    • Journal of the Korean Data and Information Science Society
    • /
    • v.24 no.6
    • /
    • pp.1341-1348
    • /
    • 2013
  • To solve the classification problems, various data mining techniques have been applied to database marketing, credit scoring and market forecasting. In this paper, we compare various techniques such as bagging, boosting, LASSO, random forest and support vector machine with the daily lens transaction data. The classical techniques-decision tree, logistic regression-are used too. The experiment shows that the random forest has a little smaller misclassification rate and standard error than those of other methods. The performance of the SVM is good in the sense of misclassfication rate and bad in the sense of standard error. Taking the model interpretation and computing time into consideration, we conclude that the LASSO gives the best result.

Predicting Default Risk among Young Adults with Random Forest Algorithm (랜덤포레스트 모델을 활용한 청년층 차입자의 채무 불이행 위험 연구)

  • Lee, Jonghee
    • Journal of Family Resource Management and Policy Review
    • /
    • v.26 no.3
    • /
    • pp.19-34
    • /
    • 2022
  • There are growing concerns about debt insolvency among youth and low-income households. The deterioration in household debt quality among young people is due to a combination of sluggish employment, an increase in student loan burden and an increase in high-interest loans from the secondary financial sector. The purpose of this study was to explore the possibility of household debt default among young borrowers in Korea and to predict the factors affecting this possibility. This study utilized the 2021 Household Finance and Welfare Survey and used random forest algorithm to comprehensively analyze factors related to the possibility of default risk among young adults. This study presented the importance index and partial dependence charts of major determinants. This study found that the ratio of debt to assets(DTA), medical costs, household default risk index (HDRI), communication costs, and housing costs the focal independent variables.

Verification of the Suitability of Fine Dust and Air Quality Management Systems Based on Artificial Intelligence Evaluation Models

  • Heungsup Sim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.8
    • /
    • pp.165-170
    • /
    • 2024
  • This study aims to verify the accuracy of the air quality management system in Yangju City using an artificial intelligence (AI) evaluation model. The consistency and reliability of fine dust data were assessed by comparing public data from the Ministry of Environment with data from Yangju City's air quality management system. To this end, we analyzed the completeness, uniqueness, validity, consistency, accuracy, and integrity of the data. Exploratory statistical analysis was employed to compare data consistency. The results of the AI-based data quality index evaluation revealed no statistically significant differences between the two datasets. Among AI-based algorithms, the random forest model demonstrated the highest predictive accuracy, with its performance evaluated through ROC curves and AUC. Notably, the random forest model was identified as a valuable tool for optimizing the air quality management system. This study confirms that the reliability and suitability of fine dust data can be effectively assessed using AI-based model performance evaluation, contributing to the advancement of air quality management strategies.

Bike Insurance Fraud Detection Model Using Balanced Randomforest Algorithm (균형 랜덤 포레스트를 이용한 이륜차 보험사기 적발 모형 개발)

  • Kim, Seunghoon;Lee, Soo Il;Kim, Tae ho
    • Journal of Digital Convergence
    • /
    • v.20 no.2
    • /
    • pp.241-250
    • /
    • 2022
  • Due to the COVID-19 pandemic, with increased 'untact' services and with unstable household economy, the bike insurance fraud is expected to surge. Moreover, the fraud methodology gets complicated. However, the fraud detection model for bike insurance is absent. we deal with the issue of skewed class distribution and reflect the criterion of fraud detection expert. We utilize a balanced random-forest algorithm to develop an efficient bike insurance fraud detection model. As a result, while the predictive performance of balanced random-forest model is superior than it of non-balanced model. There is no significant difference between the variables used by the experts and the confirmatory models. The important variables to detect frauds are turned out to be age and gender of driver, correspondence between insured and driver, the amount of self-repairing claim, and the amount of bodily injury liability.

Sensorless Vector Control Using Tabu Search Algorithm (타부 탐색을 이용한 센서리스 벡터 제어)

  • Lee, Yang-Woo;Park, Kyung-Hun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.13 no.12
    • /
    • pp.2625-2632
    • /
    • 2009
  • Recently, a speed control method of induction motor by vector control theory is applied to highly efficient industrial field. The speed sensors attached to motor are used for detection of rotating speed. In the case using speed sensor, the installation of cable for minimization of electric noise, weaken maintenance, increase of price are demerit. Therefore the study of speed sensorless vector control theory performed activity. The design of sensorless vector controller for induction motor using tabu search is studied. The proposed sensorless vector control for Induction Motor is composed of two parts. The first part is for optimizing the speed estimation with initial PI parameters. The second part is for optimizing the speed control with initial PI parameters using tabu search. Proposed tabu search is improved by neighbor solution creation using Triangular random distribution. In order to show the usefulness of the proposed method, we apply the proposed controller to the sensorless speed control of an actual AC induction Motor System. The performance of this approach is verified through simulation and the experiment.

Wireless Multihop Communications for Frontier cell based Multi-Robot Path Finding with Relay Robot Random Stopping (다중홉 통신 기법을 활용한 네트워크 로봇의 협력적 경로 탐색)

  • Jung, Jin-Hong;Kim, Seong-Lyun
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.33 no.11B
    • /
    • pp.1030-1037
    • /
    • 2008
  • This paper presents an algorithm for the path-finding problem in unknown environments with cooperative and commutative multi-robots. To verify the algorithm, we investigate the problem of escaping through the exit of a randomly generated maze by muti-robots. For the purpose, we adopt the so called frontier cells and cell utility functions, which were used in the exploration problem for the multi-robots. For the wireless communications among the mobile robots, we modify and utilize the so called the random basket routing, a kind of hop-by-hop opportunistic routing. A mobile robot, once it finds the exit, will choose its next action, either escape immediately or stay-and-relay the exit information for the others, where the robot takes one action based on a given probability. We investigate the optimal probability that minimizes the average escaping time (out of the maze to the exit) of a mobile robot.