• Title/Summary/Keyword: 라필리

Search Result 15, Processing Time 0.181 seconds

Eruption Styles and Processes of the Dongmakgol Tuff, Cheolwon Basin, Korea (철원분지 동막골응회암의 분출유형과 분출과정)

  • Hwang, Sang Koo;Son, Yeong Woo;Choi, Jang O;Kim, Jae Ho
    • The Journal of the Petrological Society of Korea
    • /
    • v.22 no.1
    • /
    • pp.49-62
    • /
    • 2013
  • The Dongmakgol Tuff is divided into 8 lithofacies based on their grain size and depositional structures: massive tuff breccia(TBm), welded tuff and lapilli tuff(LTw), rheomorphic tuff and lapilli tuff(LTr), massive lapilli tuff(LTm), stratified lapilli tuff(LTs), gradedly bedded lapilli tuff(LTg), crudely bedded lapilli tuff(LTb) and massive fine tuff(Tm). They can be divided into 3 pyroclastic rock group based on their constituents of the lithofacies. The lower group(LI) is composed of LTm, LTw and LTr, which are interpreted to have resulted from emplacement of voluminous pyroclastic flows due to ignimbrite-form eruption to boiling-over eruption. The middle group(LT+MI) consists of LTs, LTg and LTm associated with Tm in the lower part, and of LTm, LTw and LTr in the middle and upper parts; these suggest that started with deposition of pyroclastic surges from phreatoplinian eruption by poor eternal water, passed through emplacement of pyroclastic flows from ignimbrite-form eruption and ended with deposition of voluminous pyroclastic flows from boiling-over eruption. The upper group(lUT+uUT+UI) is composed of LTs, LTg and Tm in the lowermost, TBm, LTb, LTb and Tm in the lower part, and LTm and LTw in the middle and upper part, suggesting that began with deposition of surges from phreatoplinian eruption, passed through deposition of pumice- and ash-fallouts from plinian eruption and transformed into emplacement of pyroclastic flows due to boiling-over eruption. As result, eruptive processes in the Dongmakgol Tuff approximately began with phreatoplinian or/and plinian eruption, transformed into ignimbrite-forming eruption and proceeded into boiling-over eruption in each volcanism, but proceeded presumably without phreatoplinian or plinian eruption in the earlier stage of 1st volcanism.

Eruption Types and Textures of Pyroclastics from the Jugam Scoria Deposits, Ulleung Island, Korea (울릉도 죽암분석층에서 나온 화성쇄설물들의 조직과 분화유형)

  • Hwang, Sang Koo;Ahn, Ung San;Lee, So Jin;Oh, Kyung Sik
    • Economic and Environmental Geology
    • /
    • v.52 no.5
    • /
    • pp.459-469
    • /
    • 2019
  • We present a quantitative evaluation of density, vesicularity and microtextures for coarse lapilli collected from the Jugam Scoria Deposits, northeastern Ulleung Island. Lapilli from the deposits have modal vesicularities of 61% in the lower part and 67% in the upper part, and vesicle populations dominated by non-interconnected subround vesicles. Clasts of modal vesicularity have margin-parallel zonation, with subaerially quenched rims interpreted to preserve "syn-fragmentation" magmatic textures in microlite-free sideromelane rims, grading "post-fragmentation" tachylitic interiors with vesicle and microlite textures that progressively coarsen from rim to interior. Degassing scenarios are linked to syn-fragmentation vesicle textures to demonstrate that the magmas degassed in dominantly closed systems. And diffusion-controlled cooling rates of trachyandesitic pyroclasts in contact with atmosphere are linked to post-fragmentation evolution of vesicle and microlite textures to infer about transportation and dispersal of the pyroclasts in low shooting jets. These textural analyses show that the Jugam eruptions were strictly applied to the strombolian type, analogous to the hawaiian type among any classical subaerial eruption type.

Evaluation of Volcanic Processes and Possible Eruption Types in Ulleung Island (울릉도에서의 화산과정과 발생 가능한 분출유형의 평가)

  • Hwang, Sang Koo;Jeong, Seong Wook;Ryu, Han Young;Son, Young Woo;Kwon, Tae Ho
    • Economic and Environmental Geology
    • /
    • v.53 no.6
    • /
    • pp.715-727
    • /
    • 2020
  • Volcanostratigraphy in Ulleung Island is divided into 4 stratigraphic groups: Dodong Basaltic Rocks, Ulleung Group, Seonginbong Group and NariGroup. The main pyroclastics in them includes lapilli tuff intercalated within the Dodong Basaltic Rocks, lapilli tuff at the top of Sadong Breccia, Sataegam Tuff, Gombawi Welded Tuff, Bongrae Scoria Deposits, Maljandeung Tuff, Nari Scoria Deposits and Jugam Scoria Deposits. Analysing eruption types, The lapilli tuff in the Dodong Basaltic Rocks is derived from Surtseyan eruption, and the Bongrae, Nari and Jugam Scoria Deposits are caused by Strombolian eruptions or/and sub-Plinion eruptions, but the Sataegam Tuff and Maljandeung Tuff are derived from Plinian and phreatoplinian eruptions. Among them the large-scaled eruptions. In particular, the eruptions of Maljandeung were large enough to result in caldera collapse, and had falled out tephras to the eastern Korean peninsula but even Japan Islands. The magma with high potential to be still alive is judged to be trachyandesitic and phonolitic in composition. If the trachyandesitic magma explodes, it will probably result in a strombolian eruption and have a fairly low explosivity, but if the phonolitic magma explodes, it will probably result in a plinian eruption and have a much higher explosivity. If the eruption had a high explosivity, there is a possibility that it could easily be converted into a phreatoplinian eruption due to the influx of groundwater by the easy generation of fractures. These large-scaled eruptions could fall out tephras to the eastern Korean peninsula but even Japan Islands.

Geomorphology and Geology of Mt. Deok on Bigeum Island, Shinan, Korea (신안 비금도 덕산의 지형 및 지질)

  • Chung, Chull-Hwan;Kim, Cheong-Bin
    • Journal of the Korean earth science society
    • /
    • v.38 no.7
    • /
    • pp.552-560
    • /
    • 2017
  • This study investigates the development process of Mt. Deok on Bigeum Island, Shinan, on the basis of geomorphological and geological analyses. K-Ar dating was carried out on two samples of the acidic lapilli tuff developed in the study area, and the obtained K-Ar ages are $70.4{\pm}1.4$ and $76.9{\pm}1.5Ma$, which correspond to the Late Cretaceous (Campanian). Mt. Deok is surrounded by rock cliff, and various weathering microtopographic features, such as tafoni, tor and gnamma, are developed. Tafoni with diverse morphologic types is the most dominant feature, indicative of intense salt weathering. Geological characteristics such as porous tuff and joint have played an important role in the development of tafoni and rock cliff. Geomorphology and geology of Mt. Deok reflect paleoenvironmental change and interaction between human and nature in the coastal area.

Tephra Origin of Goryeri Archaeological Site, Milyang Area, Korea (밀양 고례리 화산 유리물질 기원 해석)

  • 김주용;양동윤;박영철
    • The Korean Journal of Quaternary Research
    • /
    • v.13 no.1
    • /
    • pp.35-43
    • /
    • 1999
  • Goryeri archaeological site is located in the upstream valley of the Danjang River. The basement rocks of the area are composed of the Cretaceous to Palaeogene biotite granite (KbGr), acidic dyke (Kad), Milyang Andesite (Kma) and Jyunggagsan Formation. Among them Milyang Andesite and Jyunggagsan Formation are prevailed in archaeological site and they are composed of reddish brown tuffaceous shale, sandstone and conglomerate, with intercalations of acidic tuffs and lapilli tuffs. The purpose of this research is not only to compare REE pattern of the soil-sedimentary deposits with those of surrounding rocks, but also to identify vitric tephra in the soil-sedimentary deposits derived from the andesite, acidic tuff and lapilii tuff, in order to illucidate the provenance of the vitric tephra. The rare earth element(REE) of the soils and sedimentary deposits results in the same REE pattern with those analyzed from the surrounding basement rocks. This indicates that the soils and sedimentary deposits are originated from the surrounding basement rocks, most probably from the andesite and lapilli tuff. In addition, vitric tephra were identified both in the Quaternary in-situ weathered soils and sedimentary deposits (PMU-13 and PMU-17), and in the weathered surrounding lapilli tuff. These vitric tephra are considered to be different from those of Japanese AT(Aira Tanzawa) -tephra. The latter is predominant with clean, platty, bubble-walled and Y-shaped vitrics, while the former is conspicuous with those shapes of large and diverse size and devitrified, as well as having secondarily bubbled-surfaces reflecting surface weathering. The size of vitric fragments in the Goryeri site is about 300${\mu}{\textrm}{m}$ and large in size in compasion to 150${\mu}{\textrm}{m}$ of Japanese AT-Tephra. The interim results of the research are contradictary to the explanations based on a series of AT-tephra researches carried by Japanese scholar. In short, the vitric materials of the Goryeri archaeological site are most probably originated from the weathering products of the surrounding basement rocks, and are different from the AT-tephra in their size, shape and devitrification properties. Thus it is highly recommended to have a further comprehensive research which is more emphasized the magmatic genesis of these vitric tephra in addition to the external shape and morphology.

  • PDF

Subsurface Investigation of Dokdo Island using Geophysical Methods (물리탐사기법의 독도 지반조사 적용)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.4
    • /
    • pp.335-342
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface, along with rock physical property measurements in Dokdo island. The survey results in Seodo island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction, and that Bedded Lapilli Tuff in the downstream was more severely influenced by weathering and erosion than Trachy Andesite II in the upstream of the survey area. In Dongdo island, Trachy Andesite III and Scoria Bedded Lapilli Tuff were severely weathered and eroded, considered as weathered to soft rock formations, and their weathered zone becomes thicker towards the antiaircraft facility in the NE direction of the survey area. The study results also illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Stratified Ash Tuff is the most soft rock in Dokdo island.

Petrology of the Volcanic Rocks in Geoje Island, South Korea (거제도 화산암의 암석학적 연구)

  • 윤성효;이준동;이상원;고정선;서윤지
    • The Journal of the Petrological Society of Korea
    • /
    • v.6 no.1
    • /
    • pp.1-18
    • /
    • 1997
  • Andesitic pyroclastics and lava flows are deposited as a part of composite volcanoes by Cretaceous volcanic activity in Geojae Island, off the coast of Korea. The andesitic pyroclastics are composed of tuff breccia and lapilli tuff minor intercalated tuff. Lava flows are divided into dense and porphyritic andesite containing phenocrysts of plagioclase, pyroxene, and/or hornblende. The andesitic rocks represent charactersitcs of carc-alkaline BAR association with basalt, basaltic andesite, andesite, and dacite to rhyolite. Major element variations of the volcanic rocks show that $Al_2O_3$, total FeO, CaO, MgO and $TiO_2$ decrease with increasing $SiO_2$ but $K_2O$ and total alkalis increase, and represent differntiation trend of calc-alkaline rock series. In spider diagram, contents of Sr, K, Rb, Ba, and Th are relatively high, but contents of Nb, P, Ti and Cr are low. These petrochemcial characteristics are similar to those of rocks from island arc or continental margein related to plate subduction. Chondrite-normalized REE patterns of volcanic rocks are paralle to subparallel, with LREE enriched than HREE, and show gradual increase of negative Eu anomaly from basalt to dacite and rhyolite, suggesting comagmatic fractional crystallization with minor effects of assimilation and magma mixing. Andesitic rocks are assumed medium-K orogenic andesites that formed in the tectomagmatic environment of subduction zone under normal continental margin arc.

  • PDF

Geochemistry and Mineral Paragenesis of Bentonite from the Tertiary Formation in Yangnam Area (양남 지역 제 3 기층에 부존하는 벤토나이트의 지구 화학 및 광물 생성 단계)

  • 노진환;오성진
    • Journal of the Mineralogical Society of Korea
    • /
    • v.7 no.2
    • /
    • pp.111-127
    • /
    • 1994
  • 양남 지역의 제 3 기층인 하서리 응회암층의 중.상부에 부존되는 벤토나이트들은 원암의 암상과 화학조성에 의존되는 광호 양상과 광물상을 나타낸다. 벤톤나이트들은 대부분 안산암질 원암의 기원을 시사하는 희유 및 희토류 원소들의 함유 양상을 보이고, 현무암질 원암의 벤토나이트는 최상부의 일부 층준에만 그 산출이 국한된다. 이 지역의 벤토나이트는 주로 유리질 내지 라필리 응회암이 속성 변질된 것으로 이 과정에서 SiO2와 알칼리 (Na, K) 성분들이 고갈되는 화학 성분상의 유동 양상이 인지된다. 벤토나이트는 주된 광물 성분인 스멕타이트 이외에 흔히 단백석 및 석영같은 규산 광물과 휼란다이트, 모데나이트 및 클리높틸로라이트간은 불석광물들을 수반한다. 스멕타이트는 대부분 몰노릴로나이트 유형이지만 최상부 층준의 현무암질원 벤토나이트와 비교하여 논트로나이트의 광물 화학, X-선회절 양상, 층간 화학 및 염화학적 특성 등이 논의되었다. 이 지역 벤토나이트의 형성과정은 (1) 화산쇄설물의 급속한 퇴적, (2) 비이상적으로 높은 매몰 온도(<8$0^{\circ}C$) 조건, (3) 규산 광물의침전에 의한 공극수 내외 H4SiO4의 제거, (4) 원암의 낮은 Si/al 함유비와 높은 Fe 함유도 등에 의해서 조장된 것으로 해석된다.

  • PDF

Geophysical Investigation of the Subsurface in the Dok-do Island (물리탐사를 이용한 독도 지반조사)

  • Kim, Chang-Ryol;Park, Sam-Gyu;Bang, Eun-Seok;Kim, Bok-Chul
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.125-130
    • /
    • 2008
  • Electrical resistivity and seismic refraction surveys were conducted to investigate geologic structures and geotechnical characteristics of the subsurface in Dok-do island, along with rock physical properties. The resistivity results in Seo-do island show that the fault adjacent to the fisherman's shelter is a normal fault and extended towards the NW direction. Bedded Rapilli Tuff in the downstream was more severely influenced in depth by weathering and erosion than Trachy Andesite II in the upstream area. The physical properties of the rocks illustrate that Trachyte and Trachy Andesite are hardest, Massive Tuff Breccia is next, and Tuffs are the most soft rocks in Dok-do island.

  • PDF

Determination of Flow Direction from Flow Indicators and Lateral Grading in the Naeyeonsan Tuff, Northern Pohang, Korea (포항 북부 내연산응회암의 흐름지시자와 측방점이로부터 유향 결정)

  • Cho, Nam-Sik;Hwang, Sang Koo
    • The Journal of the Petrological Society of Korea
    • /
    • v.26 no.2
    • /
    • pp.153-163
    • /
    • 2017
  • The Naeyeonsan Tuff is a stratigraphic unit which is distinguished as a cooling unit in the volcanic rocks of the northern Pohang. The Naeyeonsan Tuff, which is composed of crystals of plagioclase, quartz and hornblende, glasses of pumice and shard, and lithics of dacite, rhyolite, sandstone and shale, belongs to a lapilli tuff field according to the granulometric classification and to a vitric tuff field according to the constituent classification. The tuffs mostly develop welding foliations by dense welding and flatterning pumices and shards, and show several flow indicators by pyroclastic flowing. We can know a movement pattern from flow lineations and imbrications by pumices and lithics, and lateral gradings in isopleth map by average largest lithics and pumices in the Naeyeonsan Tuff, which indicate that the Naeyeonsan Tuff had a possible source area from the southeastern part.