DOI QR코드

DOI QR Code

Eruption Styles and Processes of the Dongmakgol Tuff, Cheolwon Basin, Korea

철원분지 동막골응회암의 분출유형과 분출과정

  • Hwang, Sang Koo (Department of Earth and Environmental Sciences, Andong National University) ;
  • Son, Yeong Woo (Department of Earth and Environmental Sciences, Andong National University) ;
  • Choi, Jang O (Department of Earth and Environmental Sciences, Andong National University) ;
  • Kim, Jae Ho (Department of Earth and Environmental Sciences, Andong National University)
  • 황상구 (안동대학교 지구환경과학과) ;
  • 손영우 (안동대학교 지구환경과학과) ;
  • 최장오 (안동대학교 지구환경과학과) ;
  • 김재호 (안동대학교 지구환경과학과)
  • Received : 2013.02.28
  • Accepted : 2013.03.26
  • Published : 2013.03.31

Abstract

The Dongmakgol Tuff is divided into 8 lithofacies based on their grain size and depositional structures: massive tuff breccia(TBm), welded tuff and lapilli tuff(LTw), rheomorphic tuff and lapilli tuff(LTr), massive lapilli tuff(LTm), stratified lapilli tuff(LTs), gradedly bedded lapilli tuff(LTg), crudely bedded lapilli tuff(LTb) and massive fine tuff(Tm). They can be divided into 3 pyroclastic rock group based on their constituents of the lithofacies. The lower group(LI) is composed of LTm, LTw and LTr, which are interpreted to have resulted from emplacement of voluminous pyroclastic flows due to ignimbrite-form eruption to boiling-over eruption. The middle group(LT+MI) consists of LTs, LTg and LTm associated with Tm in the lower part, and of LTm, LTw and LTr in the middle and upper parts; these suggest that started with deposition of pyroclastic surges from phreatoplinian eruption by poor eternal water, passed through emplacement of pyroclastic flows from ignimbrite-form eruption and ended with deposition of voluminous pyroclastic flows from boiling-over eruption. The upper group(lUT+uUT+UI) is composed of LTs, LTg and Tm in the lowermost, TBm, LTb, LTb and Tm in the lower part, and LTm and LTw in the middle and upper part, suggesting that began with deposition of surges from phreatoplinian eruption, passed through deposition of pumice- and ash-fallouts from plinian eruption and transformed into emplacement of pyroclastic flows due to boiling-over eruption. As result, eruptive processes in the Dongmakgol Tuff approximately began with phreatoplinian or/and plinian eruption, transformed into ignimbrite-forming eruption and proceeded into boiling-over eruption in each volcanism, but proceeded presumably without phreatoplinian or plinian eruption in the earlier stage of 1st volcanism.

동막골응회암은 대부분 화쇄류암으로 구성되지만 입도와 퇴적구조에 따라 암상을 분류하면 (1) 괴상응회각력암, (2) 용결 응회암 및 라필리응회암, (3) 유변상 응회암 및 라필리응회암이 있고 (4) 괴상 라필리응회암, (5) 성층화 라필리응회암, (6) 점이층리 라필리응회암, (7) 불량층리 라필리응회암과 (8) 괴상 세립질 응회암이 있다. 이 암상들은 상하로 3개 화성쇄설암군으로 구별하여 조합할 수 있다. 하부 화성쇄설암군(LI)은 괴상 라필리응회암, 용결 응회암 및 라필리응회암과 유변상 응회암 및 라필리응회암으로 조합되며, 화쇄류형성 분출로부터 끓어넘침 분출에 의한 화쇄류로부터 정치된 것이다. 중부 화성쇄설암군(LT+MI)은 하부에 성층화 라필리응회암, 점이층리 라필리응회암, 괴상 라필리응회암과 이들에 조합된 괴상 세립질 응회암으로 구성되고 중 상부에 괴상 라필리응회암, 용결 응회암 및 라필리응회암과 유변상 응회암 및 라필리응회암으로 조합된다. 이들은 외부물의 소량 유입으로 수증기마그마성 분출에 의한 화쇄써지로 시작하여 끓어넘침 분출의 화쇄류로 전환된 것이다. 상부 화성쇄설암군(lUT+uUT+UI)은 최하부에 성층화 라필리응회암, 점이층리 라필리응회암으로 조합되고, 하부에 괴상 응회각력암, 불량층리 라필리응회암, 괴상 라필리응회암과 괴상 세립질 응회암으로 조합되며 중 상부에 괴상 라필리응회암, 용결 응회암 및 라필리응회암으로 조합되며, 이들은 수증기플리니언 분출에 의한 써지로 시작해서 플리니언 분출에 의한 강하를 거쳐 끓어넘침 분출로 전환되어 화쇄류로부터 퇴적된 것이다. 결론적으로 동막골응회암에서 분출과정은 대체로 전 중 후기 화산작용이 단계별로 수증기플리니언 혹은 플리니언 분출로 시작하여 화쇄류형성 분출로 전환되고 끓어넘침 분출로 진행되는 순서를 밟았다. 그러나 전기 화산작용은 아마도 초엽의 수증기플리니언 혹은 플리니언 분출 없이 진행되었다.

Keywords

References

  1. Aramaki, S., 1984, Formation of the Aira caldera, southern Kyushu, -22,000 years ago. Journal of Geophysical Research, 89, 8485-8501. https://doi.org/10.1029/JB089iB10p08485
  2. Branney, M.J. and Kokelaar, P., 2002, Pyroclastic density currents and the sedimentation of ignimbrites. London, The Geological Society Memoir 27, 143p.
  3. Bursik, M.I. and Woods, A.W., 1996, The dynamics and thermodynamics of large ash flows. Bulletin of Volcanology, 58, 175-193. https://doi.org/10.1007/s004450050134
  4. Cas, R.A.F., Landis, C.A. and Fordyce, R.E., 1989, A monogenetic, Surtla-type, Surtseyan volcano from the Eocene-Oligocene Waiareka-Deborah volcanics, Otago, New Zealand: a model. Bulletin of Volcanology, 51, 281-298. https://doi.org/10.1007/BF01073517
  5. Cas, R.A.F. and Wright, J.V., 1987, Volcanic successions. Allen & Unwin, London, 528.
  6. Chough, S.K. and Sohn, Y.K., 1990, Depositional mechanics and sequences of base surges, Songaksan tuff ring, Cheju Island, Korea. Sedimentology, 37, 1115-1135. https://doi.org/10.1111/j.1365-3091.1990.tb01849.x
  7. Druitt, T.H., 1985, Vent evolution and lag breccia formation during the Cape Riva eruption of Santorini, Greece. Journal of Geology, 93, 439-454. https://doi.org/10.1086/628965
  8. Druitt, T.H., 1992, Emplacement of the 18 May 1980 lateral blast deposit ENE of Mount St. Helens, Washington. Bulletin of Volcanology, 54, 554-572. https://doi.org/10.1007/BF00569940
  9. Druitt, T.H. and Bacon, C.R., 1986, Lithic breccia and ignimbrite erupted during the collapse of Crater Lake caldera, Oregon. Journal of Volcanology and Geothermal Research, 29, 1-32. https://doi.org/10.1016/0377-0273(86)90038-7
  10. Druitt, T.H. and Sparks, R.S.J, 1985, On the formation of calderas during ignimbrite eruptions. Nature, 310, 679-681.
  11. Fisher, R.V., 1990, Transport and deposition of a pyroclastic surge across an area of high relief: the 18 May 1980 eruption of Mount St. Helens, Washington. Geological Society of America Bulletin, 102, 1038-1054. https://doi.org/10.1130/0016-7606(1990)102<1038:TADOAP>2.3.CO;2
  12. Fisher, R.V. and Schmincke, H.-W., 1984, Pyroclastic rocks. Springer, Heidelberg, 472p.
  13. Francis, P.W., O'Callaghan, L, Kretzchmar, G.A., Thorpe, R.S., Sparks, R.S.J., Page, R.N., de Barrio, R.E., Gillou, G. and Gonzalez, O.E., 1983, The Cerro Galan ignimbrite. Nature, 301, 51-53. https://doi.org/10.1038/301051a0
  14. Hwang, S.K., 2013, Welding and crystallization facies, and cooling processes of the Dongmakgol Tuff in the Cheolwon Basin, Korea. Journal of the Geological Society of Korea, 49, 101-119.
  15. Hwang, S.K., An, Y.M. and Yi, K., 2011, SHRIMP age datings and volcanism times of the igneous rocks in the Cheolwon Basin, Korea. Journal of the Petrological Society of Korea, 20, 231-241. https://doi.org/10.7854/JPSK.2011.20.4.231
  16. Hwang, S.K. and Kim, J.H., 2010, Flow directions and source of the Dongmakgol Tuff in the Cheolwon Basin, Korea. Journal of the Petrological Society of Korea, 19, 51-65.
  17. Hwang, S.K., Kim, S.H., Hwang, J.H. and Kee, W.S., 2010, Petrotectonic setting and petrogenesis of Cretaceous igneous rocks in the Cheolwon Basin, Korea. Journal of the Petrological Society of Korea, 19, 71-91.
  18. Hwang, S.K. and Ryu, H.Y., 2011, Volcanic processes of the Cretaceous ignimbrites, Cheolwon Basin: Magmatic processes of the Dongmakgol Tuff. Journal of the Geological Society of Korea, 47, 647-664.
  19. Kee, W.-S., Lim, S.-B., Kim, H., Hwang, S.K., Song, K.-Y. and Kihm, Y.-B., 2008, Geological report of the Yeoncheon Sheet. Korea Institute of Geoscience and Mineral Resources, 83p.
  20. Rosi, M., Vezzoli, L., Aleotti, P. and De Censi, M., 1996, Interaction between caldera collapse and eruptive dynamics during Campanian Ignimbrite eruption, Phlegrean Fields, Italy. Bulletin of Volcanology, 57, 541-554. https://doi.org/10.1007/BF00304438
  21. Self, S. and Rampino, M.R., 1981, The 1883 eruption of Krakatau. Nature, 294, 699-704. https://doi.org/10.1038/294699a0
  22. Sparks, R.S.J., 1976, Grain size variations in ignimbrites and implications for the transport of pyroclastic flows. Sedimentology, 23, 147-188. https://doi.org/10.1111/j.1365-3091.1976.tb00045.x
  23. Sparks, R.S.J., Self, S. and Walker, G.P.L., 1973, Products of ignimbrite eruptions. Geology, 1, 115-118. https://doi.org/10.1130/0091-7613(1973)1<115:POIE>2.0.CO;2
  24. Valentine, G.A., 1987, Stratified flow in pyroclastic surges. Bulletin of Volcanology, 49, 616-630. https://doi.org/10.1007/BF01079967
  25. Wilson, C.J.N., 1980, The role of fluidisation in the emplacement of pyroclastic flows: An experimental approach. Journal of Volcanology and Geothermal Research, 8, 231-249. https://doi.org/10.1016/0377-0273(80)90106-7
  26. Wright, J.A. and Walker, G.P.L., 1977, The ignimbrite source problem: significance of a co-ignimbrite lag-fall deposits. Geology, 5, 729-732. https://doi.org/10.1130/0091-7613(1977)5<729:TISPSO>2.0.CO;2

Cited by

  1. Petrological Characteristics and Provenance Estimation on the Stone Artefacts from the Pocheon Neulgeori Prehistoric Site, Korea vol.24, pp.1, 2015, https://doi.org/10.7854/JPSK.2015.24.1.1