• Title/Summary/Keyword: 라틴 하이퍼큐브

Search Result 32, Processing Time 0.03 seconds

Seismic Fragility of I-Shape Curved Steel Girder Bridge using Machine Learning Method (머신러닝 기반 I형 곡선 거더 단경간 교량 지진 취약도 분석)

  • Juntai Jeon;Bu-Seog Ju;Ho-Young Son
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.4
    • /
    • pp.899-907
    • /
    • 2022
  • Purpose: Although many studies on seismic fragility analysis of general bridges have been conducted using machine learning methods, studies on curved bridge structures are insignificant. Therefore, the purpose of this study is to analyze the seismic fragility of bridges with I-shaped curved girders based on the machine learning method considering the material property and geometric uncertainties. Method: Material properties and pier height were considered as uncertainty parameters. Parameters were sampled using the Latin hypercube technique and time history analysis was performed considering the seismic uncertainty. Machine learning data was created by applying artificial neural network and response surface analysis method to the original data. Finally, earthquake fragility analysis was performed using original data and learning data. Result: Parameters were sampled using the Latin hypercube technique, and a total of 160 time history analyzes were performed considering the uncertainty of the earthquake. The analysis result and the predicted value obtained through machine learning were compared, and the coefficient of determination was compared to compare the similarity between the two values. The coefficient of determination of the response surface method was 0.737, which was relatively similar to the observed value. The seismic fragility curve also showed that the predicted value through the response surface method was similar to the observed value. Conclusion: In this study, when the observed value through the finite element analysis and the predicted value through the machine learning method were compared, it was found that the response surface method predicted a result similar to the observed value. However, both machine learning methods were found to underestimate the observed values.

Tension Estimation of Tire using Neural Networks and DOE (신경회로망과 실험계획법을 이용한 타이어의 장력 추정)

  • Lee, Dong-Woo;Cho, Seok-Swoo
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.7
    • /
    • pp.814-820
    • /
    • 2011
  • It takes long time in numerical simulation because structural design for tire requires the nonlinear material property. Neural networks has been widely studied to engineering design to reduce numerical computation time. The numbers of hidden layer, hidden layer neuron and training data have been considered as the structural design variables of neural networks. In application of neural networks to optimize design, there are a few studies about arrangement method of input layer neurons. To investigate the effect of input layer neuron arrangement on neural networks, the variables of tire contour design and tension in bead area were assigned to inputs and output for neural networks respectively. Design variables arrangement in input layer were determined by main effect analysis. The number of hidden layer, the number of hidden layer neuron and the number of training data and so on have been considered as the structural design variables of neural networks. In application to optimization design problem of neural networks, there are few studies about arrangement method of input layer neurons. To investigate the effect of arrangement of input neurons on neural network learning tire contour design parameters and tension in bead area were assigned to neural input and output respectively. Design variables arrangement in input layer was determined by main effect analysis.

Durability Prediction for Concrete Structures Exposed to Carbonation Using a Bayesian Approach (베이지안 기법을 이용한 중성화에 노출된 콘크리트 구조물의 내구성 예측)

  • Jung, Hyun-Jun;Kim, Gyu-Seon;Ju, Min-Kwan;Lee, Sang-Cheol
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.275-276
    • /
    • 2009
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to carbonation. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

  • PDF

Optimization of a Cooling Channel with Staggered Elliptical Dimples Using Neural Network Techniques (신경회로망기법을 사용한 타원형 딤플유로의 냉각성능 최적화)

  • Kim, Hyun-Min;Moon, Mi-Ae;Kim, Kwang-Yong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.13 no.6
    • /
    • pp.42-50
    • /
    • 2010
  • The present analysis deals with a numerical procedure for optimizing the shape of elliptical dimples in a cooling channel. The three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis is employed in conjunction with the SST model for predictions of the turbulent flow and the heat transfer. Three non-dimensional geometric design variables, such as the ellipse dimple diameter ratio, ratio of the dimple depth to the average diameter, and ratio of the distance between dimples to the pitch are considered in the optimization. Twenty-one experimental points within design space are selected by Latin Hypercube Sampling. Each objective function values at these points are evaluated by RANS analysis and producing optimal point using surrogate model. The linear combination of heat transfer coefficient and friction loss related terms with a weighting factor is defined as the objective function. The results show that the optimized elliptical dimple shape improves considerably the heat transfer performance than the circular dimple shape.

Stress and Deformation Analysis of a Tool Holder Spindle using $iSight^{(R)}$ ($iSight^{(R)}$를 이용한 툴 홀더 스핀들의 변형 및 응력해석)

  • Kwon, Koo-Hong;Chung, Won-Jee
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.27 no.9
    • /
    • pp.103-110
    • /
    • 2010
  • This paper presents the optimized approximation of finite element modeling for a complex tool holder spindle using both DOE (Design of Experiment) with Optimal Latin Hypercube (OLH) method and approximation modeling method with Radial Basis Function (RBF) neural network structure. The complex tool holder is used for holding a (milling/drilling) tool of a machine tool. The engineering problem of complex tool holder results from the twisting of spindle of tool holder. For this purpose, we present the optimized approximation of finite element modeling for a complex tool holder spindle using both DOE (Design of Experiment) with Optimal Latin Hypercube (OLH) method (specifically a module of $iSight^{(R)}$ FD-3.1) and approximation modeling method with Radial Basis Function (RBF) (another module of $iSight^{(R)}$ FD-3.1) neural network structure

A Conservative Safety Study on Low-Level Radioactive Waste Repository Using Radionuclide Release Source Term Model (선원항 모델을 사용한 저준위 방사성폐기물 처분장의 보수적인 안전성고찰)

  • Kim, Chang-Lak;Lee, Myung-Chan;Cho, Chan-Hee
    • Nuclear Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.63-70
    • /
    • 1993
  • A simplified safety assessment is carried out on rock-cavern type disposal of LLW using the analytical repository source term (REPS) model. For reliable prediction of the leach rates for various radionuclides, degradation of concrete structures, corrosion rate of waste container, degree of corrosion on the container surface, and the characteristics of radionuclides are considered in the REPS model. The results of preliminary assessment show that Cs-137, Ni-63, and Sr-90 are dominant. For the parametric uncertainty and sensitivity analysis, Latin hypercube sampling technique and rank correlation technique are applied. The results of the potential public health impacts show that radiological dose to intruder in the worst case scenario will be negligible and that more attention should be given to near-field performance.

  • PDF

Durability Prediction for Concrete Structures Exposed to Chloride Attack Using a Bayesian Approach (베이지안 기법을 이용한 염해 콘크리트구조물의 내구성 예측)

  • Jung, Hyun-Jun;Zi, Goang-Seup;Kong, Jung-Sik;Kang, Jin-Gu
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.1
    • /
    • pp.77-88
    • /
    • 2008
  • This paper provides a new approach for predicting the corrosion resistivity of reinforced concrete structures exposed to chloride attack. In this method, the prediction can be updated successively by a Bayesian theory when additional data are available. The stochastic properties of model parameters are explicitly taken into account into the model. To simplify the procedure of the model, the probability of the durability limit is determined from the samples obtained from the Latin hypercube sampling technique. The new method may be very useful in designing important concrete structures and help to predict the remaining service life of existing concrete structures which have been monitored.

Structural Optimization for LMTT-Mover Using Sequential Kriging Based Approximation Model (순차적 크리깅 근사모델을 이용한 LMTT 이송체의 구조최적설계)

  • Park Hyung Wook;Han Dong Seop;Lee Kwon Hee;Han Geun Jo
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2005.10a
    • /
    • pp.289-295
    • /
    • 2005
  • LMTT (Linear Motor-based Transfer Techn-ology) is a horizontal transfer system for the yard automation This system is based on PMLSM (Permanent Magnetic Linear Synchronous Motor) toot consists of stator modules on the rail and shuttle car. In this research, the kriging interpolation method with sequential sampling find the optimum design of mover in LMTT. The design variables are considered as the transverse, longitudinal and wheel beam's thicknesses. The objective function is set up as weight, while the constant function are set up as the stresses generated by four loading conditions. The objective function is set up as weight. The optimum results obtained by the suggested method are compared with those by the GENESIS.

  • PDF

A Simulation-based Optimization for Scheduling in a Fab: Comparative Study on Different Sampling Methods (시뮬레이션 기반 반도체 포토공정 스케줄링을 위한 샘플링 대안 비교)

  • Hyunjung Yoon;Gwanguk Han;Bonggwon Kang;Soondo Hong
    • Journal of the Korea Society for Simulation
    • /
    • v.32 no.3
    • /
    • pp.67-74
    • /
    • 2023
  • A semiconductor fabrication facility(FAB) is one of the most capital-intensive and large-scale manufacturing systems which operate under complex and uncertain constraints through hundreds of fabrication steps. To improve fab performance with intuitive scheduling, practitioners have used weighted-sum scheduling. Since the determination of weights in the scheduling significantly affects fab performance, they often rely on simulation-based decision making for obtaining optimal weights. However, a large-scale and high-fidelity simulation generally is time-intensive to evaluate with an exhaustive search. In this study, we investigated three sampling methods (i.e., Optimal latin hypercube sampling(OLHS), Genetic algorithm(GA), and Decision tree based sequential search(DSS)) for the optimization. Our simulation experiments demonstrate that: (1) three methods outperform greedy heuristics in performance metrics; (2) GA and DSS can be promising tools to accelerate the decision-making process.

Shape Optimization of a Rotating Cooling Channel with Pin-Fins (핀휜이 부착된 회전하는 냉각유로의 최적설계)

  • Moon, Mi-Ae;Husain, Afzal;Kim, Kwang-Yong
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.34 no.7
    • /
    • pp.703-714
    • /
    • 2010
  • This paper describes the design optimization of a rotating rectangular channel with staggered arrays of pin-fins by Kriging metamodeling technique. Two non-dimensional variables, the ratio of the height to the diameter of the pin-fins and the ratio of the spacing between the pin-fins to the diameter of the pin-fins are chosen as the design variables. The objective function that is a linear combination of heat transfer and friction loss related terms with a weighting factor is selected for the optimization. To construct the Kriging model, objective function values at 20 training points generated by Latin hypercube sampling are evaluated by a three-dimensional Reynolds-averaged Navier-Stokes (RANS) analysis method with the SST turbulence model. The Kriging model predicts the objective function value that agrees well with the value calculated by the RANS analysis at the optimum point. The objective function is reduced by 11% by the optimization of the channel.