• Title/Summary/Keyword: 라이다데이터

Search Result 109, Processing Time 0.026 seconds

A Study on the Integration of Airborne LiDAR and UAV Data for High-resolution Topographic Information Construction of Tidal Flat (갯벌지역 고해상도 지형정보 구축을 위한 항공 라이다와 UAV 데이터 통합 활용에 관한 연구)

  • Kim, Hye Jin;Lee, Jae Bin;Kim, Yong Il
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.38 no.4
    • /
    • pp.345-352
    • /
    • 2020
  • To preserve and restore tidal flats and prevent safety accidents, it is necessary to construct tidal flat topographic information including the exact location and shape of tidal creeks. In the tidal flats where the field surveying is difficult to apply, airborne LiDAR surveying can provide accurate terrain data for a wide area. On the other hand, we can economically obtain relatively high-resolution data from UAV (Unmanned Aerial Vehicle) surveying. In this study, we proposed the methodology to generate high-resolution topographic information of tidal flats effectively by integrating airborne LiDAR and UAV point clouds. For the purpose, automatic ICP (Iterative Closest Points) registration between two different datasets was conducted and tidal creeks were extracted by applying CSF (Cloth Simulation Filtering) algorithm. Then, we integrated high-density UAV data for tidal creeks and airborne LiDAR data for flat grounds. DEM (Digital Elevation Model) and tidal flat area and depth were generated from the integrated data to construct high-resolution topographic information for large-scale tidal flat map creation. As a result, UAV data was registered without GCP (Ground Control Point), and integrated data including detailed topographic information of tidal creeks with a relatively small data size was generated.

The broadcast Scheduling method supporting unequal size of data in mobile computing environment (이동 컴퓨팅 환경에서 다양한 데이터 크기를 지원하는 브로드캐스트 스케줄링 기법)

  • 신지현;이종환;이중화;이철숙;김경석
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 2001.10a
    • /
    • pp.244-246
    • /
    • 2001
  • 이동 컴퓨팅은 주로 서버에서 클라이언트로의 대역폭이 상대적으로 큰 비대칭적 환경에서 이루어진다. 비대칭적 판정에서 정보 전달은 브로드개스팅이 효과적이다. 기존의 많은 논문들이 서버가 전달하는 데이터의 크기가 같다고 가정하고 스케줄링 알고리즘을 제안하였지만 실제 데이터의 크기는 매우 다양하다 인기도가 비슷하더라도 데이터 크기가 다를 때 큰 데이터 대신 작은 데이터 여러 개를 전송하면 클라이언트의 평균 대기시간이 감소하여 성능이 향상될 수 있다. 따라서 본 논문에서는 대기시간을 최소화하기위해 인기도뿐만 아니라 데이터 크기도 함께 고려하는 스케줄링 기법을 제안하고 성능을 평가하였다.

  • PDF

Study on the Method of Extracting Unregistered Islands using LiDAR Data (항공라이다 데이터를 이용한 미등록 섬 추출 연구)

  • Wie, Gwang-Jae;Yun, Hong-Sik;Kang, Sang-Gu;Kang, In-Gu
    • Journal of Korean Society for Geospatial Information Science
    • /
    • v.17 no.3
    • /
    • pp.109-114
    • /
    • 2009
  • Although island is great worth in ecology, environmental conservation and important territory as a national land for developing the marine, the bottom of the sea and also ecological studying field for the ages to come, it has not been managed because of lack of a scientific surveying. In the case of a cadastral record, inaccessible islands have not been registered in current cadastral record because of the limit of surveying technology in 1910. Therefore, a scientific investigation and systematic management about unregistered islands are necessary. But, a airborne laser scanning system is possible to acquire an accurate positions with digital images about inaccessible islands. Therefore, scientific detection of unregistered islands became possible. This paper presented the results of the shoreline extraction around the Heuksan island using Lidar data and the detection of unregistered islands comparing the cadastral map to the ortho-image. Also, we presented the extraction technique of unregistered islands by calculating their positions and areas. As a result, we extracted effectively 16 unregistered islands around the Heuksan island.

  • PDF

2D LiDAR based 3D Pothole Detection System (2차원 라이다 기반 3차원 포트홀 검출 시스템)

  • Kim, Jeong-joo;Kang, Byung-ho;Choi, Su-il
    • Journal of Digital Contents Society
    • /
    • v.18 no.5
    • /
    • pp.989-994
    • /
    • 2017
  • In this paper, we propose a pothole detection system using 2D LiDAR and a pothole detection algorithm. Conventional pothole detection methods can be divided into vibration-based method, 3D reconstruction method, and vision-based method. Proposed pothole detection system uses two inexpensive 2D LiDARs and improves pothole detection performance. Pothole detection algorithm is divided into preprocessing for noise reduction, clustering and line extraction for visualization, and gradient function for pothole decision. By using gradient of distance data function, we check the existence of a pothole and measure the depth and width of the pothole. The pothole detection system is developed using two LiDARs, and the 3D pothole detection performance is shown by detecting a pothole with moving LiDAR system.

Outlier Detection from High Sensitive Geiger Mode Imaging LIDAR Data retaining a High Outlier Ratio (높은 이상점 비율을 갖는 고감도 가이거모드 영상 라이다 데이터로부터 이상점 검출)

  • Kim, Seongjoon;Lee, Impyeong;Lee, Youngcheol;Jo, Minsik
    • Korean Journal of Remote Sensing
    • /
    • v.28 no.5
    • /
    • pp.573-586
    • /
    • 2012
  • Point clouds acquired by a LIDAR(Light Detection And Ranging, also LADAR) system often contain erroneous points called outliers seeming not to be on physical surfaces, which should be carefully detected and eliminated before further processing for applications. Particularly in case of LIDAR systems employing with a Gieger-mode array detector (GmFPA) of high sensitivity, the outlier ratio is significantly high, which makes existing algorithms often fail to detect the outliers from such a data set. In this paper, we propose a method to discriminate outliers from a point cloud with high outlier ratio acquired by a GmFPA LIDAR system. The underlying assumption of this method is that a meaningful targe surface occupy at least two adjacent pixels and the ranges from these pixels are similar. We applied the proposed method to simulated LIDAR data of different point density and outlier ratio and analyzed the performance according to different thresholds and data properties. Consequently, we found that the outlier detection probabilities are about 99% in most cases. We also confirmed that the proposed method is robust to data properties and less sensitive to the thresholds. The method will be effectively utilized for on-line realtime processing and post-processing of GmFPA LIDAR data.

Dynamic Object Detection Architecture for LiDAR Embedded Processors (라이다 임베디드 프로세서를 위한 동적 객체인식 아키텍처 구현)

  • Jung, Minwoo;Lee, Sanghoon;Kim, Dae-Young
    • Journal of Platform Technology
    • /
    • v.8 no.4
    • /
    • pp.11-19
    • /
    • 2020
  • In an autonomous driving environment, dynamic recognition of objects is essential as the situation changes in real time. In addition, as the number of sensors and control modules built into an autonomous vehicle increases, the amount of data the central control unit has to process also rapidly increases. By minimizing the output data from the sensor, the load on the central control unit can be reduced. This study proposes a dynamic object recognition algorithm solely using the embedded processor on a LiDAR sensor. While there are open source algorithms to process the point cloud output from LiDAR sensors, most require a separate high-performance processor. Since the embedded processors installed in LiDAR sensors often have resource constraints, it is essential to optimize the algorithm for efficiency. In this study, an embedded processor based object recognition algorithm was developed for autonomous vehicles, and the correlation between the size of the point clouds and processing time was analyzed. The proposed object recognition algorithm evaluated that the processing time directly increased with the size of the point cloud, with the processor stalling at a specific point if the point cloud size is beyond the threshold

  • PDF

Backpack- and UAV-based Laser Scanning Application for Estimating Overstory and Understory Biomass of Forest Stands (임분 상하층의 바이오매스 조사를 위한 백팩형 라이다와 드론 라이다의 적용성 평가)

  • Heejae Lee;Seunguk Kim;Hyeyeong Choe
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.363-373
    • /
    • 2023
  • Forest biomass surveys are regularly conducted to assess and manage forests as carbon sinks. LiDAR (Light Detection and Ranging), a remote sensing technology, has attracted considerable attention, as it allows for objective acquisition of forest structure information with minimal labor. In this study, we propose a method for estimating overstory and understory biomass in forest stands using backpack laser scanning (BPLS) and unmanned aerial vehicle laser scanning (UAV-LS), and assessed its accuracy. For overstory biomass, we analyzed the accuracy of BPLS and UAV-LS in estimating diameter at breast height (DBH) and tree height. For understory biomass, we developed a multiple regression model for estimating understory biomass using the best combination of vertical structure metrics extracted from the BPLS data. The results indicated that BPLS provided accurate estimations of DBH (R2 =0.92), but underestimated tree height (R2 =0.63, bias=-5.56 m), whereas UAV-LS showed strong performance in estimating tree height (R2 =0.91). For understory biomass, metrics representing the mean height of the points and the point density of the fourth layer were selected to develop the model. The cross-validation result of the understory biomass estimation model showed a coefficient of determination of 0.68. The study findings suggest that the proposed overstory and understory biomass survey methods using BPLS and UAV-LS can effectively replace traditional biomass survey methods.

Obstacle Avoidance of Unmanned Surface Vehicle based on 3D Lidar for VFH Algorithm (무인수상정의 장애물 회피를 위한 3차원 라이다 기반 VFH 알고리즘 연구)

  • Weon, Ihn-Sik;Lee, Soon-Geul;Ryu, Jae-Kwan
    • Asia-pacific Journal of Multimedia Services Convergent with Art, Humanities, and Sociology
    • /
    • v.8 no.3
    • /
    • pp.945-953
    • /
    • 2018
  • In this paper, we use 3-D LIDAR for obstacle detection and avoidance maneuver for autonomous unmanned operation. It is aimed to avoid obstacle avoidance in unmanned water under marine condition using only single sensor. 3D lidar uses Quanergy's M8 sensor to collect surrounding obstacle data and includes layer information and intensity information in obstacle information. The collected data is converted into a three-dimensional Cartesian coordinate system, which is then mapped to a two-dimensional coordinate system. The data including the obstacle information converted into the two-dimensional coordinate system includes noise data on the water surface. So, basically, the noise data generated regularly is defined by defining a hypothetical region of interest based on the assumption of unmanned water. The noise data generated thereafter are set to a threshold value in the histogram data calculated by the Vector Field Histogram, And the noise data is removed in proportion to the amount of noise. Using the removed data, the relative object was searched according to the unmanned averaging motion, and the density map of the data was made while keeping one cell on the virtual grid map. A polar histogram was generated for the generated obstacle map, and the avoidance direction was selected using the boundary value.

Implementation of a Java-based Multicast Streaming System (자바를 이용한 멀티캐스트 스트리밍 시스템 구현)

  • 지일구;차호정
    • Proceedings of the Korean Information Science Society Conference
    • /
    • 1998.10a
    • /
    • pp.121-123
    • /
    • 1998
  • 본 논문에서는 자바를 사용한 고화질 MPEG-1 데이터를 전송하는 멀티캐스트 스트리밍 시스템의 구현을 기술한다. 서버는 다 채널의 MPEG-1 스트림 전송을 지원하며 각 채널의 QoS를 보장하기 위한 스케쥴링 정책을 사용한다. 서버 구현에는 실시간을 지원하는 Jave Peal Time 패키지를 사용하였고, 클라이언트는 Sun사의 Java Media Framework 패키지를 사용하였다.

  • PDF

Detection of Individual Trees and Estimation of Mean Tree Height using Airborne LIDAR Data (항공 라이다데이터를 이용한 개별수목탐지 및 평균수고추정)

  • Hwang, Se-Ran;Lee, Mi-Jin;Lee, Im-Pyeong
    • Spatial Information Research
    • /
    • v.20 no.3
    • /
    • pp.27-38
    • /
    • 2012
  • As the necessity of forest conservation and management has been increased, various forest studies using LIDAR data have been actively performed. These studies often utilize the tree height as an important parameter to measure the forest quantitatively. This study thus attempt to apply two representative methods to estimate tree height from airborne LIDAR data and compare the results. The first method based on the detection of the individual trees using a local maximum filter estimates the number of trees, the position and heights of the individual trees, and the mean tree height. The other method estimates the maximum and mean tree height, and the crown mean height for each grid cell or the entire area from the canopy height model (CHM) and height histogram. In comparison with the field measurements, 76.6% of the individual trees are detected correctly; and the estimated heights of all trees and only conifer trees show the RMSE of 1.91m and 0.75m, respectively. The tree mean heights estimated from CHM retain about 1~2m RMSE, and the histogram method underestimates the tree mean height with about 0.6m. For more accurate derivation of diverse forest information, we should select and integrate the complimentary methods appropriate to the tree types and estimation parameters.