• Title/Summary/Keyword: 라이닝 콘크리트

Search Result 233, Processing Time 0.027 seconds

An Evaluation of the Mechanical Property for the Backfilling Material of the NATM Composite Lining Tunnel using the Lightweight Foamed Mortar (경량기포 모르타르를 이용한 NATM Composite 라이닝 터널 뒤채움재의 역학적 특성 평가)

  • Ma, Sang-Joon;Choi, Hee-Sup;Kim, Dong-Min;Lee, Heung-Soo;Kim, Kyung-Duk
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.04a
    • /
    • pp.717-720
    • /
    • 2008
  • This paper, an evaluation of the mechanical property for the backfilling materials of the NATM Composite lining tunnel using the lightweight foamed mortar, relates to the performance of permeability, compressive strength and unit volume weight. Therefore, this study is aimed to prove the three main factor that refered to the above line for development of new tunnel method. As the result of this study, it would be confirmed that the D mix is better than other mixs a side of all tests and its relation that is for the tunnel backfilling materials.

  • PDF

A Study on Pore Pressure Evaluation of Concrete Lining in Road Tunnel Fire (도로터널 라이닝 화재조건 콘크리트 라이닝 공극압력 특성에 관한 연구)

  • Park, Kyung-Hoon;Kim, Heung-Youl;Yoo, Yong-Ho;Lee, Chul-Ho;Kim, Hyung-Jun
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.484-489
    • /
    • 2008
  • We carried out a one-way heating experiment on the PC panel manufactured by changing the filling depths(20,30,40,50mm) of concrete regarding the fire strength in order to measure the inner concrete pressure which is a direct cause of concrete spalling. This fire experiment was conducted under the fire strength conditions of ISO 834 Standard, Modified Hydrocarbon and the maximum value of Pore Pressure was measured. As a result of analyzing the time it took to reach maximum pressure, it showed that the time rising to the maximum pressure of high strength concrete of 40MPa is slower than that of a 24MPa tunnel lining. In case of ISO fire conditions, spalling damage might take place in heating period of $20{\sim}40$ minutes in the range of $100{\sim}200^{\circ}C$ temperature. In case of MHC fire conditions, the area damaged by fire can appear after a lapse of $25{\sim}50$ minutes in the range of $150{\sim}250^{\circ}C$ temperature.

  • PDF

Stability Analysis of Existing Tunnel in Stratified Sedimentary Rocks Subjected to Bridge Pier Load (퇴적암 지역에서의 교각 기초 하중을 받는 기존터널의 안정성에 대한 해석적 고찰)

  • 김교원
    • The Journal of Engineering Geology
    • /
    • v.8 no.2
    • /
    • pp.153-161
    • /
    • 1998
  • An anisotropic characteristics of stratified sedimentary rocks should be considered in the design of tunnel. The second line of Taegu subway is under construction through the sedimentary rocks which is stratified by alternation of shale and sandstone, and Tongsoe over bridge road is planned to be constructed along the subway line. Thus the subway twin tunnels will be subjected by the bridge load of 76.2 MN per pier that will be placed in between the twin tunnels of the subway line. A numerical analysis is carried out for the stability of the twin tunnel, and the result shows that the maximum principal stress of surrounding ground is increased by 5∼6 MPa and the additional displacement of concrete lining is reached up to 8∼10mm due to the external bridge load. For the safety operation of the subway, reinforcement of the tunnel structure is highly recommended.

  • PDF

A study on development of the high-flowable filling material and application in the old tunnel (터널 배면공동 뒤채움재 개발과 노후터널의 적용에 관한 연구)

  • Ma, Sang-Joon;Seo, Kyoung-Won;Bae, Gyu-Jin;An, Sang-Chul;Im, Kyung-Ha
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.4 no.3
    • /
    • pp.195-205
    • /
    • 2002
  • Most tunnel damage such as cracks or leakage which exist in tunnel liner commonly, is caused by the cavities that exist behind the tunnel liner, through the tunnel safety inspections. These cavities were analysed to check if they affect the stability of tunnels. This study is on the development of the controlled low-strength and flowable filling material which an be applied to the cavity behind the tunnel lining. The backfilling material studied here is crushed sand and stone-dust which is in cake-state and is a by-product obtained in the producing process of aggregate. Varying the compound mixing ratio, laboratory tests of compression test and chemical analyses were carried out. In addition, the material was applied to an old tunnel for the performance assessment.

  • PDF

A study on the occurrence of cracks in the tunnel pavement in the soil under use (토사구간 공용중 터널 포장부 균열 발생에 관한 연구)

  • Kim, Nag-Young;Lee, Kang-Hyun;Cho, Nam-Hun;You, Kwang-Ho;Baek, Seung-Chol
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.5
    • /
    • pp.749-760
    • /
    • 2017
  • Recently, the proportion of tunnel structures in roads and railways has increased rapidly. Along with this trend, the rate of occurrence of cracks and dropouts in concrete lining of tunnel structures is increasing. Generally, maintenance of such concrete lining is normalized and managed as the core of maintenance work in tunnel maintenance. However, the maintenance of the tunnel pavement is important in securing driver in the tunnel. In the design of tunnels, the underground condition of the tunnel is designed to be in good rock condition, so there have not been many cases of cracks in the tunnel pavement in the past. Recently, the construction of tunnel structures has been rapidly increased, and the length of the tunnels has become longer.Tunnel pavement installed in these ground conditions is increasing the occurrence of cracks in the pavement due to decrease of bearing capacity of the pavement after a long time. In this study, FWD and GPR were conducted to analyze the types of cracks and the reduction of bearing capacity in the tunnel.

Fire-Resistance Characteristics of Shield Tunnel Concrete Linings (쉴드터널 콘크리트 라이닝의 내화특성)

  • Park Hae Geun;Lee Myeong Sub;Jeon Sang Eun;Park Dong Kyu
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.32-35
    • /
    • 2004
  • In recent years a number of catastrophic tunnel fires, the Euro tunnel, the Mont Blanc tunnel, the Tauem tunnel and the Gotthard tunnel, have occurred and inflicted serious damages to European countries. If a fire occurs in shield tunnels, the reinforced concrete segment linings playing as an important structural member is expected to damage severely and finally can be caused the collapse of tunnel. The purpose of this study is to evaluate the performance of concrete segment lining under heat exposure and to obtain information to assist a new technical approach to fighting fires in tunnels. In order to evaluate the fire-resistance performance of concrete segment by adding Polypropylene fibers, fire tests using the RABT heat-load curve is carried out. The temperature rise of this curve is very rapid up to $1200^{\circ}C$ within 5 minutes, and duration time of the $1200^{\circ}C$ exposure is 55 minutes. From the fire test, it was found that the explosive spalling was rapidly reduced by adding polypropylene fibers and this method is considered as an effective fireproof material to upgrade fire safety in tunnels economically.

  • PDF

Standardization of Injection System by Inorganic Materialfor Crack Repair of Tunnel Concrete Structures (터널 콘크리트 구조물의 보수를 위한 무기계 균열주입기술의 표준화 연구)

  • Bae, Kee-Sun;Gwak, Su-Jung;Baek, Jong-Myeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.6
    • /
    • pp.191-197
    • /
    • 2006
  • This study is to establish a standardization of injection system by inorganic material for crack repair of tunnel concrete structures. For this various surveys and experiments were carried out as followed. The first we surveyed capability of injection and crack pattern of concrete structures in site. and second we analyzed the relationship between crack width and volume of injection, and decided pressure and volume of injection. Finally we evaluated the relationship between crack width and volume of injection with kind of concrete structures, and between required time for injection and crack width with thickness of structure. From these surveys and experiments, we cleared the relationship between crack patterns and injection technologies such as volume, pressure of injection and required time for injection with kind of structure.

Measurement of compressive and tensile strain in concrete structure with FBG sensor fixture (광섬유격자센서의 콘크리트구조물에의 고정과 압축 및 인장 변형의 측정)

  • Kim, Ki-Soo;Kim, Young-Jin;Moon, Dae-Jung;Kim, Seong-Woon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2008.11a
    • /
    • pp.149-152
    • /
    • 2008
  • FBG sensor system is applied to the concrete lining structure in Taegu subway. Near the structure, the power cable tunnel construction started. We wanted to measure the deformation of the structure due to the construction by the FBG sensor. The applied sensor has the gauge length of 1 meter to overcome the inhomogeneity of the concrete material with enough length. In order to fix tightly to the structure, the partially stripped parts of the sensor glued to the package and slip phenomenon between fiber and acrylate jacket was prevented. Prestrain of the sensor was imposed by controlling the two fixed points with bolts and nuts in order to measure compressive strain as well as tensile strain. The behavior of subway lining structure could be monitored very well

  • PDF

Measurement of Air Tightness of Concrete Block and its Construction Joint from a Model Experiment (모형실험을 통한 콘크리트 블록 및 시공이음부의 기밀성 측정)

  • Kim, Hyung-Mok;Ryu, Dong-Woo;Synn, Joong-Ho;Song, Won-Kyong
    • Tunnel and Underground Space
    • /
    • v.20 no.6
    • /
    • pp.434-445
    • /
    • 2010
  • Underground compressed air energy storage (CAES) system in a lined rock cavern is considered one of the promising large-scale energy storage technologies. In this study, permeabilities of concrete lining block and its construction joint, which are the major components of an air tightness system of the undeground CAES, were measured from a model experiment. From the experiment, it was found that intrinsic permeability of construction joint was larger than that of concrete block by the order scale of $10^1{\sim}10^4$, so that it would be very important to control the quality of construction joints in-situ in order to secure air tightness of storage system. And the permeability of construction joint could be decreased as low as that of the concrete block by pasting an acryl-type adhesive on bonding surfaces. Higher degrees of water saturation of the concrete block resulted in the lower permeability, which is more preferable in the viewpoint of air tightness of storage cavern.

A re-appraisal of scoring items in state assessment of NATM tunnel considering influencing factors causing longitudinal cracks (종방향균열 영향인자 분석을 통한 NATM터널 정밀안전진단 상태평가 항목의 재검토)

  • Choo, Jin-Ho;Yoo, Chang-Kyoon;Oh, Young-Chul;Lee, In-Mo
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.4
    • /
    • pp.479-499
    • /
    • 2019
  • State assessment of an operational tunnel is usually done by performing visual inspection and durability tests by following the detailed guideline for safety inspection (SI) and/ or precision inspection for safety and diagnosis (PISD). In this study, 12 NATM tunnels, which have been operational for more than 10 years, were inspected to figure out the cause of longitudinal cracks for the purpose of modifying the scoring items in the state assessment NATM tunnel related to the longitudinal crack and the thickness of concrete lining. All investigated tunnels were classified into four groups depending on the shape and usage of each tunnel. The causes of longitudinal crack occurrence were analyzed by investigating the correlations between the longitudinal crack and the following four factors: the patterns of ground excavation; construction state of primary support system; characteristics of material properties of the concrete lining; and thickness of lining which was obtained by Ground Penetration Radar (GPR) tests. It was found that influencing factors causing longitudinal cracks in the lining were closely related with the construction condition of the primary support system, i.e. shotcrete, rockbolt, and steel-rib; crack occurrences were not much affected by the excavation patterns. As for the properties of concrete lining materials, occurrence of the longitudinal crack was mostly affected by the following three items: w/c ratio; contents of cement; and strength of lining. When estimating the lining thickness of the concrete lining by GPR tests and taking thickness effect into account in the statement assessment, it was concluded that increase of the index score by an average of 0.03 (ranging from 0.01 up to 0.071) is needed; a more realistic way of state assessment should be proposed in which the increased index score caused by lack of lining thickness should be taken into account.