• Title/Summary/Keyword: 라만 산란

Search Result 94, Processing Time 0.03 seconds

Raman Study of Individual InGaAs Nanowires

  • Kim, Han-Ul;No, Hui-Seok;Lee, Eun-Hye;Bae, Min-Hwan;Song, Jin-Dong
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.08a
    • /
    • pp.370-370
    • /
    • 2012
  • 성장 길이 방향으로 조성비가 점차 바뀌는 InxGa1-xAs 나노와이어에 대한 라만 산란 연구 결과를 보고한다. Si 기판 위에 Au 입자를 뿌린 후에 이를 촉매로 하여 molecular beam epitaxy 방법을 이용하여 InGaAs 나노와이어를 성장시켰다. 투과전자현미경 실험 결과에 의하면 InGaAs 나노와이어의 길이는 약 $3{\sim}5{\mu}m$, 두께는 약 20~50 nm 정도였다. 성장 길이 방향으로 조성비의 변화를 연구하기 위해서 나노와이어에 대한 공간 분해된 라만 산란 실험을 수행 하였다. 실험 결과 나노와이어의 길이 방향으로 InAs-like transverse optical (TO) phonon 에너지와 GaAs-like TO phonon 에너지의 변화가 있었으며 이를 통해 성장 길이 방향으로 In과 Ga의 조성비의 변화가 있음을 알 수 있었다. 각각의 광학 포논 에너지에 대한 분석을 통해 조성비의 변화에 대한 정량적인 수치를 얻을 수 있었다.

  • PDF

The Characteristics of Resonant Stimulated Raman Scattering in the water droplet (미세 물방울에서의 공명 유도라만산란의 특성)

  • 문희종;김광훈;임용식;고춘수;이재형;장준성
    • Korean Journal of Optics and Photonics
    • /
    • v.6 no.4
    • /
    • pp.337-344
    • /
    • 1995
  • We have detected the resonant stimulated Raman scattering signal when the Q-switched Nd:YAG laser beam are incident on the $35~62{\mu}m$ sized water droplet as pump beam. The signals appeared as uniformly spaced peaks and the intervals between peaks become narrow as the droplet size increases. Also we have confirmed the morphology dependent resonances (MDR's) characteristic of the stimulated Raman scattering signal when the water droplet becomes nearly spherical shape after two water droplets are coupled to a droplet. The error in the measured intervals between MDR's of same mode order is about 5%.out 5%.

  • PDF

Asymmetry of the 1.54${\mu}m$ forward and backward raman gain in methane (라만매질 $CH_4$의 전후방 1.54${\mu}m$ 유도라만 산란광의 비대칭적 발생)

  • 최영수;고해석;강응철
    • Korean Journal of Optics and Photonics
    • /
    • v.10 no.2
    • /
    • pp.89-94
    • /
    • 1999
  • The 1.54 ${\mu}{\textrm}{m}$ forward and backward stimulated Raman scattering (SRS) have been studied in CH$_4$pumped by 1.06 ${\mu}{\textrm}{m}$ Nd:YAG laser. The forward and backward SRS output energy in a single pass were measured at dufferent CH$_4$pressures. Under steady state conditions, the pump input threshold energies and Raman gains in forward and backward directions were for Raman conversion at various CH$_4$pressures for a tight focusing geometry. The forward and backward slope efficiency for Raman conversion were 18% and 34% respectively. The pump input threshold energy of the backward SRS was lower than that of the forward. In backward SRS, the experimental input laser threshold and Raman gain values were in good agreement with the calculated values at different pressures of CH$_4$. The retio of the backward to the forward SRS gain was appoximately 1.4 times above 1200 psi. We obtained that the backward Raman gain coefficient was 0.32 cm/GW, and the forward Raman gain coefficient 0.23cm/GW at 1400 psi. Asymmetry of the forward and backward Raman gain is caused by the interaction between different pump intensities of each direction duting the amplification of the Stokers. The backward Raman gain is proportional to the average pump intensity. However, the forward SRS output grows by depleting the local pump intensity.

  • PDF

Symmetry of GaAsN Conduction-band Minimum: Resonant Raman Scattering Study (GaAsN 전도띠 바닥의 대칭성: 공명라만산란연구)

  • Seong M.J.
    • Journal of the Korean Vacuum Society
    • /
    • v.15 no.2
    • /
    • pp.162-167
    • /
    • 2006
  • The symmetry of the conduction-band minimum of $GaAs_{1-x}N_{x}$ is probed by performing resonant Raman scattering (RRS) on thin layers of $GaAs_{1-x}N_{x}(x{\leq}0.7)$ epitaxially grown on Ge substrates. Strong resonance enhancement of the LO(longitudinal optical)-phonon Raman intensity is observed with excitation energies near the $E_0$ as well as $E_+$ transitions, However, in contrast to the distinct LO-phonon line-width resonance enhancement and activation of various X and L zone-boundary phonons brought about slightly below and near the $E_+$ transition, respectively, we have not observed any resonant LO-phonon line-width broadening or activation of sharp zone-boundary phonons near the $E_0$ transition. The observed RRS results reveal that the conduction-band minimum of GaAsN predominantly consists of the delocalized GaAs bulk-like states of ${\Gamma}$ symmetry.

Detection of tropospheric water vapor and liquid water density by using Raman lidar technique (라만Lidar기술을 이용한 대류권 수증기와 물방울 입자의 밀도 측정)

  • 김덕현;차형기;이종민;최성철;김영상
    • Proceedings of the Optical Society of Korea Conference
    • /
    • 2000.02a
    • /
    • pp.150-151
    • /
    • 2000
  • 대기 중에 존재하는 수증기(water vapor)와 물방울 입자(liquid water)는 대기의 열 순환 과정에서 이산화탄소와 함께 매우 중요한 역할을 하는 중요한 변수이다. 대류권의 수증기 밀도를 라만 라이다 기술을 이용하여 원격으로 측정하려는 시도는 오래 전부터 있었으나, 물방울 입자의 밀도 측정은 최근에 연구가 시작되었으며, 특히 수증기의 밀도 측정에서 물방울 입자의 라만 신호가 심각한 오차요인으로 알려지면서 이에 대한 연구가 구체적으로 진행되었다.[1-2] 라만 라이다 연구는 대기 중에서 비교적 흡수가 적고 산란단면적이 큰 레이저 광원의 선택이 매우 중요하다. (중략)

  • PDF

Raman Spectromter for Detection of Chemicals on a Road (지표면 화학물질 측정을 위한 라만분광장치)

  • Ha, Yeon Chul;Lee, Jae Hwan;Koh, Young Jin;Lee, Seo Kyung;Kim, Yun Ki
    • Korean Journal of Optics and Photonics
    • /
    • v.28 no.3
    • /
    • pp.116-121
    • /
    • 2017
  • In this paper, a Raman spectrometer is designed to detect chemicals contaminating the ground. The system is based on Raman spectroscopy, which is spectral analysis of scattered light from chemicals, induced by a laser. The system consists of a transmitting-optics module with a laser to induce Raman-scattered light from the sample, a receiving-optics module to collect the scattered light, and a spectrograph to separate the collected light into a wavelength spectrum. The telescope, a part of the receiving-optics module, is designed to produce a focal spot in the same position for variable measurement distances using the code V simulator, considering the distance change between the system and the road. The Raman spectra of 12 chemicals on a glass surface and on a concrete sample were measured. Intensity differences between the Raman spectra acquired on a glass surface and on a concrete sample were observed, but the characteristics of the spectra according to the chemicals on them were similar. Additionally, the Raman spectrum of PTFE (polytetrafluoroethylene) was measured at various distances. The measured and simulated optical throughputs were similar. In conclusion, it is confirmed that with this system the Raman spectrum can be measured, irrespective of the distance change.

Development of a Raman Lidar System Using the Photon-counting Method to Measure Carbon Dioxide (이산화탄소 원격 계측을 위한 광 계수 방식의 라만 라이다 장치 개발)

  • Sun Ho Park;In Young Choi;Moon Sang Yoon
    • Korean Journal of Optics and Photonics
    • /
    • v.35 no.2
    • /
    • pp.71-80
    • /
    • 2024
  • We developed a Raman lidar system for remote measurement of carbon dioxide present in atmospheric space. An air-cooled laser with 355-nm wavelength and a 6-inch optical receiver was used to miniaturize the Raman lidar system, and a scanning Raman lidar system was developed using a two-axis scanning device and a photon counter. To verify the performance of the developed Raman lidar system, a gas chamber capable of maintaining a concentration was located at a distance of about 87 m, and the change in Raman signal according to the change in the concentration of carbon dioxide was measured. As a result, it was confirmed that the change in the Raman scattering signal of carbon dioxide that appeared for a change in carbon dioxide concentration from about 0.67 to 40 vol% was linear, and the coefficient of determination (R2) value, which indicates the correlation between the carbon dioxide concentration and Raman scattering signal, showed a high linearity of 0.9999.

Raman scattering in porous silicon (다공질 규소의 라만 산란)

  • 조창호;김태균;서영석;나훈균;김영유
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.8 no.1
    • /
    • pp.124-130
    • /
    • 1998
  • The Raman scattering was studied from the porous silicons which were made by changing anodization current. As the current density was increased, it was observed that Raman was gradually far from the value of 520.5 $\textrm{cm}^{-1}$ and the full width half maximum increased. The decrease of radius of cylindrical porous crystal was calculated and the increase of its length was investigated through AFM.

  • PDF