오존은 태양광선의 존재 하에 질소산화물과 VOCs가 관련하여 발생하는 생성물이다. 대기중의 VOCs 는 히드록실 라디칼(hydroxyl radical, OHㆍ)과 같은 자유 라디칼(free radical)과 반응하여 하이드로퍼옥시 라디칼(hydroperoxy radical, HO$_2$ㆍ)과 알킬 퍼옥시 라디칼(alkyl peroxy radical, RO$_2$ㆍ)을 생성해 낸다. 이 퍼옥시 라디칼들은 NO를 NO$_2$ㆍ로 산화시키며 또한 히드록실 라디칼을 재생하며 이 히드록실 라디칼은 다시 VOCs와 반응한다. 그리고, 이때 산화된 NO$_2$는 햇빛에 의해 NO와 자유산소원자(free oxygen atom)로 광분해 되는데, 여기서 생성된 자유산소인자는 산소분자와 반응하여 오존을 생성한다. (중략)
여러종류의 자유라디칼들이 이소니트릴에 첨가되어 중간체인 imidoyl 자유라디칼 RN=CR'을 형성한다. 이것은 또한 imine으로부터 imidoyl hydrogen 을 떼어 내는 다음과 같은 반응에 의해서도 생성될 수 있다. RN=C(H)R' + R"${\cdot}{\rightarrow}$ RN=CR' + R"-H 중간체인 imidoyl 자유라디칼은 ${\beta}$-cleavage 및 aton transfer 반응을 통해서 안정된 분자를 형성한다. ${\beta}$-cleavage는 imidoyl 자유라디칼의 구조에 따라서 두개의 다른 방향으로의 반응이 가능하다. Cyanide transfer와 소위 말하는 정상적인 ${\beta}$-cleavage가 그러한 반응들이다. t-Butoxy 자유라디칼이 t-butylisonitrile 7에 첨가되면 중간체인 t-Bu-N=C-O-Bu-t가 생성되는데, 이것은 ${\beta}$-cleavage반응을 통해서 t-butylisocyanate와 t-butyl 자유라디칼을 형성한다. Phenyl 자유라디칼은 7에 첨가되어 중간체인 t-Bu-N=$C-C_6H_5$를 형성하는데 이것은 cyanide transfer 반응을 통해서 benzonitrile과 t-butyl 자유라디칼로 분해된다. 여기서 생성되는 t-butyl 자유라디칼은 다시 7에 첨가하여 intermediate인 자유라디칼 t-Bu-N=C-Bu-t을 형성하고, 이것은 다시 pivalonlonitrile과 t-butyl 자유라디칼로 분해되는데 이러한 반응이 반복되므로 radical chain isomerization을 일으킨다. Silyl 자유라디칼은 7에 첨가되어 t-Bu-N=$C-Si(CH_3)_3$를 형성하고, 이것은 cyanide transfer 반응을 거쳐서 다시 $(CH_3)_3$SiCN과 t-butyl 자유라디칼로 분해된다.
분젠버너에서 당량비에 따른 연료부족, 적정, 과잉의 경우로 예혼합된 프로판-공기 화염에서 발생된 C2, CH, OH 라디칼의 농도형태 측정을 영상처리법을 이용하여 가시화하였다. 영상처리 시스템에서 협대역 통과필터, 영상증폭장치, CCD 및 PC를 사용하여 라디칼의 발광 파장대의 영상을 처리하였다. 영상처리 시스템을 통하여 화염에서 라디칼의 반응영역을 관찰하고, 라디칼의 농도분도를 예측할 수 있었다. 반응영역에서 각각의 라디칼의 공간적 분포는 CmHn 계열 화염의 반응 메카니즘을 이해할 수 있는 충분한 정보를 제공하였다. 이 정보로부터 C2 라디칼의 형광은 반응영역 앞부분에 먼저 나타나며 CH와 OH 라디칼의 형광은 화염의 하류부분에 분포함을 알 수 있었다.
오존산화공정에서 수산화라디칼(OH.)의 생성속도가 다양한 실험조건(오존의 주입농도, 니트로벤젠의 농도, scavenger, pH, 과산화수소)에서 측정되었다. 니트로벤젠은 오존과의 직접적인 반응보다는 수산화라디칼에 의해 분해되었으며 분해속도는 오존과 니트로벤젠의 농도의 함수로 표현되었다. 또한 수산화라디칼 scavenger의 농도가 증가할수록 반응속도는 감소하였다. 실험상에서 얻은 모든 결과는 일차반응속도식을 따랐다. Probe compound와 scavenger를 이용한 경쟁적 방법을 사용하여 수산화라디칼을 측정하였는데, 그 결과 수산화라디칼의 생성속도는 오존의 농도에 선형적으로 비례하였으며, 오존 1몰당 수산화라디칼은 0.24몰이 생성되었다. 동일 오존농도에서 pH의 변화에 따른 수산화라디칼의 생성속도가 측정되었으며, (pH 10.2 ($0.91Ms^{-1}$) > pH 7.3($0.72Ms^{-1}$) > pH 5.6($0.67Ms^{-1}$) > pH 3.4($0.63Ms^{-1}$)) 중성이하의 pH에서보다 알칼리성 pH에서 수산화라디칼은 많이 발생됨을 알 수 있다. 또한 과산화수소의 첨가도 수산화라디칼의 생성속도를 증진시키는 결과를 낳았다. pH의 조절과 과산화수소의 첨가시 발생속도를 비교해보면 과산화수소를 첨가했을 때 수산화라디칼의 발생속도는 1.6배정도 더 크게 측정되었는데 이는 수산화라디칼을 발생시키는 데 있어서 과산화수소의 첨가가 pH의 조절보다는 더 좋은 증진제로써 작용할 수 있다는 것을 설명해준다. 이러한 결과들은 오염된 토양이나 지하수를 처리하기 위한 오존을 이용한 고급산화공정에 충분히 적용될 수 있을 것이라 판단된다.
본 논문에서는 HBr, O2 gas를 사용하여 나노급 반도체 디바이스에 응용되는 실리콘 트렌치 패턴의 건식 식각시 중요한 인자중의 하나인 RIE (Reactive Ion Etching) Lag현상에 관하여 연구하였다. 실험에서 사용된 식각 장치는 유도 결합 플라즈마(Inductively Coupled Plasma) 식각 장치로써, Source Power및 기판에 인가되는 Bias power 모두 13.56 MHz로 구동되는 장치이며, Source Power와 Bias Power 각각에 펄스 플라즈마를 인가할 수 있도록 제작 되어있다. HBr과 O2 gas를 사용한 트렌치 식각 중 발생하는 식각 부산물인 SiO는 프로파일 제어에 중요한 역할을 함과 동시에, 표면 산화로 인해 Trench 폭을 작게 만들어 RIE lag를 심화시킨다. Br은 실리콘을 식각하는 중요한 라디칼이며, SiO는 실리콘과 O 라디칼의 반응으로부터 형성되는 식각 부산물이다. SiO가 많으면, 실리콘 표면의 산화가 많이 진행될 것을 예측할 수 있으며, 이에 따라 RIE lag도 나빠지게 된다. 본 실험에서는 Continuous Plasma와 Bias Power의 펄스, Source Power의 펄스를 각각 적용하고, 각각의 경우 Br과 SiO 라디칼의 농도를 Actinometrical OES (Optical Emission Spectroscopy) tool을 사용하여 비교하였다. 두 라디칼 모두 Continuous Plasma와 Bias Power 펄스에 의해서는 변화가 없는 반면, Source Power 펄스에 의해서만 변화를 보였다. Source Power 값이 증가함에 따라 Br/SiO 라디칼 비가 증가함을 알 수 있었고, 표면 산화가 적게 형성됨을 예측할 수 있다. 이 조건의 경우, Continuous Plasma대비 Source Power 펄스에 의하여 RIE lag가 30.9 %에서 12.8 %로 현격히 개선된 결과를 얻을 수 있었다. 또한, 식각된 실리콘의 XPS 분석 결과, Continuous Plasma대비 Source Power 펄스의 경우 표면 산화층이 적게 형성되었음을 확인할 수 있었다. 따라서, 본 논문에서는 식각 중 발생한 Br과 SiO 라디칼을 Source Power펄스에 의한 제어로 RIE lag를 개선할 수 있으며, 이러한 라디칼의 변화는 Actinometrical OES tool을 사용하여 검증할 수 있음을 보여준다.
-butoxyl, t-butyl라디칼에 의한 치환체-톨루엔의 수소추출 반응에 대하여 CNDO/2 방법을 써서 분자궤도론적으로 고찰하였다. t-Butoxyl 라디칼의 치환체-톨루엔에 대한 수소추출반응이 Hammett식에 의하여 음의 ${\rho}$값을 나타내는 것은 t-butoxyl 라디칼이 낮은 SOMO에너지를 갖는 친전자성 라디칼의 성질이 크므로 치환체-톨루엔의 HOMO와 작용하기 때문이다. 반면, t-butyl 라디칼은 높은 SOMO에너지를 갖는 친핵성라디칼의 성질이 증가하므로 치환체-톨루엔의 LUMO와의 작용이 커져 양의 ${\rho}$값을 가진다.
플라즈마를 이용하는 식각 및 증착등의 반도체공정에 있어서 최근에는 기판의 크기가 점차 증가하는 추세에 있다. 이러한 대면적 플라즈마 발생장치 내에서 플라즈마 밀도와 라디칼 농도의 공간적인 특성을 이해하는 것에 대한 중요성이 더해지고 있다. 이를 위해 Langmuir probe와 같은 전기적 접근법에 의한 진단방법이나 광학적 접근법에 의한 진단방법에 대한 연구가 이루어 졌다. 전기적 접근법에 의한 플라즈마의 진단방법은 원리가 간단하고 정확도가 높다는 장점이 있지만 진단 장치에 의한 플라즈마의 간섭이 크고 식각가스의 경우 진단이 어렵다는 단점이 있다. 그에 비해 광학적 진단방법은 플라즈마에 간섭이 많지 않은 방법으로 알려져 있고 레이저 형광법(LIF), 원적외선 레이저 흡수 분광법(IR laser Absorption Spectroscopy), 광량측정법(Actinometry)등이 있다. 이 중 레이저 형광법, 원적외선 레이저 흡수 분광법의 경우, 진단장치가 매우 복잡하고 가격이 비싸다는 단점을 가지고 있다. 반면 광량측정법의 경우 다른 광학적 접근법에 의한 진단방법에 비해 원리와 실험장치가 간단하고 공간적인 라디칼 분포의 진단이 쉽다는 점에서 장점을 가지고 있다. Actinometry는 Ar과 같은 불활성 기체를 작은 비율을 넣어서 여기 된 불활성 기체의 파장세기와 여기 된 측정 라디칼의 파장세기의 비교를 통해 상대밀도를 측정하는 방법이다. 이 측정 방법에 Abel's inversion equation을 적용함으로 해서 대면적 M-ICP(Magnetized - Induced Coupled Plasma)에서 식각가스인 $CF_4$플라즈마에서 F 라디칼 농도의 공간적인 분포를 측정하고 분석하였다. 또한 플라즈마의 압력, 소스 전력 값과 기판 전력 값등의 조건의 변화에 따라 F 라디칼 농도의 분포가 어떻게 달라지는지에 대해 측정 분석하여 다루었다.
초음파 진동자에 의해 미립화된 케로신 분무연소의 OH 라디칼과 CH 라디칼의 자발광 특성을 고찰하기 위한 실험이 수행되었다. ICCD 카메라를 이용하여 분무화염의 자발광 강도를 측정하였으며, 연소 시 소모된 연료량은 정밀유량측정법으로 계측하였다. 그 결과, 연료소모율은 수송기체인 공기 공급유량에 선형적으로 증가하였으며, 분무연소의 특징인 전형적인 그룹 연소가 관찰되었다. OH 라디칼과 CH 라디칼을 분석한 결과, 분사방향으로의 유량 증가에 따라 라디칼 방사강도의 최댓값은 감소하고 그 위치는 후류로 이동하여 반응대의 폭은 증가하였다.
최근 액체 플라즈마에 대한 주된 이슈는 방전에 의해 발생하는 히드록실라디칼(OH-)과 버블이다. 액체 플라즈마를 이용한 다양한 응용분야에서는 히드록실라디칼에 주목하고 있다. 액체 플라즈마는 그래핀 파생물의 용액 친화도 향상을 위해 이용될 수 있다. 흑연이 포함된 과산화수소(H2O2) 용액에서 전기적인 방전으로 만들어진 히드록실라디칼로 그래핀 파생물의 용액 친화도를 향상시킨다. 이는 잠재적인 프린팅(printing) 기술 발전에 기대된다. 그리고 이 라디칼은 폐수에서 발암성의 트라이클로로아세트산(CCl3COOH)을 탈 염소하고 분해하는 역할을 하여 액체 플라즈마가 새로운 수처리 기술로 부상되고 있다. 또한 인체에서는 살균 작용을 하는 것 뿐만 아니라 단백질 고리를 끊는 역할을 하여 전립선 수술과 같은 인체수술에 적용될 수 있다. 최근 액체 플라즈마를 이용한 돼지 각막 임상수술에서 레이저와 필적할 정도로 매우 정밀하게 수술된 연구결과가 발표되어 인체 각막수술 적용에 기대된다. 이처럼 액체 플라즈마를 이용한 대부분의 응용분야에서 히드록실라디칼의 역할이 중요하다. 액체 플라즈마의 또 다른 이슈인 버블은 2가지의 역할을 한다. 첫 번째로 방전소스의 역할이다. 액체 속에 담긴 얇은 전극에 전압을 인가하면 전극 주변에서 강한 전기장의 발생으로 줄열(joule heating)에 의해 버블이 생성된다. 전극에서 버블이 생성되었을 때, 서로 다른 유전율을 가진 두 물질로 나누어진다. (버블 안은 공기로 상대 유전율 ${\varepsilon}r{\fallingdotseq}=1$, 용액은 ${\varepsilon}r{\fallingdotseq}=80$이다.) 시스템에 인가된 전압이 항복 전압(breakdown voltage)을 넘어서면 유전율이 상대적으로 낮은 버블내부에 강한 전기장이 걸리게 되어 방전이 일어난다. 만약 버블이 존재하지 않는다면 방전을 위해서 매우 높은 전압이 필요하다. 따라서 버블은 플라즈마 방전의 소스역할을 한다. 두번째로 버블은 전극의 부식을 방지하는 역할을 한다. 전극 부식은 주로 전기분해로 인한 산화반응에 의해 발생하는데 버블을 전극에 오래 머무르게 하면 부식을 방지할 수 있다. 이처럼 액체 플라즈마 시스템에서 버블의 역할들은 상당히 중요하다. 일반적으로 버블은 시스템에 인가하는 전원, 전극 극성 그리고 전압크기에 따라 거동이 달라진다. 시스템에 AC파워를 인가하면 버블은 주파수가 높을수록 전극에서 떨어지는 속도가 빨라지는 특성을 보인다. 핀 전극 극성이 음극일 때는 양극일 때보다 버블이 더 잘 생성된다. 또한 인가전압크기에 따라 거동이 달라지며 시스템에 같은 전압을 인가하여도 크기가 항상 같지 않고, 거동도 일관성을 보이지 않은 랜덤적인 모습을 보인다. 본 연구에서는 이 랜덤적인 버블의 거동을 정리하고 응용분야에서 중요하게 여기는 히드록실라디칼 생성에 대해 공부하기 위해 염류 용액(saline solution)에 핀(pin)-면(plane) 전극 구조를 설치하여 10Hz 주파수(1% duty cycle)를 가진 0-600V 구형펄스로 실험하였다. 실험을 통한 결과로서 랜덤적인 버블의 거동을 전극에서 버블이 떨어지는 속도와 플라즈마 특성에 따라 슈팅모드(shooting mode)와 유지모드(keeping mode) 2가지 모드로 분류하였다. 슈팅모드에서는 버블이 핀 전극에서 성장하지 못하고 빠른 속도로 떨어지는 모드로 플라즈마 방전이 잘 이루어지지 않는다. 반면 유지모드에서는 버블이 핀 전극에서 떨어지지 않고 지속적으로 성장한다. 이 모드에서는 펄스 시간 동안 하나의 버블로 연속적인 방전이 가능하다. 방전이 일어날 때 발생하는 히드록실라디칼의 생성은 버블 내부의 쉬스와 관련이 있다. 이 라디칼을 만들기 위해서는 높은 에너지가 요구되기 때문에 버블 내부의 쉬스(sheath)에서 만들어진다. 펄스 동안 쉬스는 주로 핀 전극 주변에서 유지되며 히드록실라디칼은 이곳에서 주로 만들어진다. 따라서 버블과 함께 쉬스도 성장하는 버블유지모드에서 슈팅모드보다 히드록실라디칼이 더 많이 생성된다.
사염화탄소는 C-Cl결합이 끊어진 후에 생성되는 삼염화탄소 라디칼의 공명 안정성에 의해 매우 반응성이 높은 사슬이동제로 알려져 있으며, 본 논문은 벤질 라디칼과 삼염화탄소 라디칼의 안정성을 비교연구하였다. 큐밀클로라이드는 C-Cl결합이 끊어진 후에 벤질 라디칼을 생성하므로 이 연구에 적합한 구조이다. 큐밀클로라이드와 사염화탄소의 반응성은 스티렌을 단량체로 한 자유라디칼 중합을 통해 계산된 사슬 이동 상수로 비교하였다. 실험 결과에 따르면 큐밀클로라이드는 사염화탄소보다 더 반응성이 높았다. 계산된 큐밀클로라이드의 스티렌에 대한 사슬이동상수 값이 약 0.0463으로 0.0011인 사염화탄소 보다 훨씬 높았다. 이 결과는 벤질 라디칼이 삼염화탄소 라디칼보다 훨씬 높은 안정성을 보여주기 때문인 것으로 추정된다. 큐밀클로라이드의 사슬이동상수의 유효성을 조사하기 위하여 Monte Carlo 모의 실험방법을 사용하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.