• 제목/요약/키워드: 라그란지안

검색결과 27건 처리시간 0.019초

난류채널유동의 라그란지안 해석 (II) - 라그란지안 통계분석 - (Lagrangian Investigation of Turbulent Channel Flow (II) - Analysis of Lagrangian Statistics -)

  • 최정일;이창훈
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.867-876
    • /
    • 2003
  • The Lagrangian dispersion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Four points Hermite interpolation in the homogeneous direction and Chebyshev polynomials in the inhomogeneous direction is adopted to simulate the fluid particle dispersion. An inhomogeneity of Lagrangian statistics in turbulent boundary layer is investigated by releasing many particles at several different wall-normal locations and tracking those particles. The fluid particle dispersions and Lagrangian structure functions of velocity are scaled by the Kolmogorov similarity. The auto-correlations of velocity and acceleration are shown at the different releasing locations. Effect of initial particle location on the dispersion is analyzed by the probability density function at the several downstreams and time instants.

열대류 경계층에서 비평형 2.5 난류모델을 기초로 한 라그란지안 입자 확산 모델 (Lagrangian Particle Dispersion Model Based on Non-equilibrium Level 2.5 Closure Model in the Convective Boundary Layer)

  • 구윤서
    • 한국대기환경학회:학술대회논문집
    • /
    • 한국대기환경학회 2000년도 춘계학술대회 논문집
    • /
    • pp.167-168
    • /
    • 2000
  • 복잡한 구조를 갖고 시간에 따라서 변하는 바람장내에서 공장굴뚝과 같은 점오염원에서 배출되는 오염물질의 확산을 계산하기 위해서 라그란지안 입자확산모텔(Lagrangian Particle Dispersion Model, LPDM)을 사용하는 것이 최근의 연구 동향이다. 구윤서(1999a, 1999b)는 중립 및 안정한 대기조건에서 바람장 계산시 비평형 2.5 난류모델을 이용한 LPDM을 개발하여 복잡한 대기흐름내 확산현상을 보다 정확히 모사할 수 있는 LPDM을 제시하였다. (중략)

  • PDF

라그란지안 기법과 입자완화동력학 기법을 이용한 콘크리트 표적 충돌해석 기법 연구 (A Study on the technique of impact analysis against concrete target using Lagrangian and Smoothed Particle Hydrodynamics)

  • 하동호
    • 한국군사과학기술학회지
    • /
    • 제5권2호
    • /
    • pp.207-216
    • /
    • 2002
  • In this paper, the study on the behavior of the deformation of brittle material, such as concrete, ceramic, was peformed by comparison of Lagrangian technique and Smoothed Particle Hydrodynamics using commercial nonlinear hydrodynamic numerical program, Autodyn_2D. The effect of SPH technique was proved by investigating the behavior of material deformation, velocity profile and pressure profile.

고밀도 가스 확산 예측을 위한 라그란지안 입자 모델 (Lagrangian Particle Model for Dense Gas Dispersion)

  • 고석율;이창훈
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2003년도 추계학술대회
    • /
    • pp.899-904
    • /
    • 2003
  • A new model for dense gas dispersion is formulated within the Lagrangian framework. In several accidental released situations, denser-than-air vapour clouds are formed which exhibit dispersion behavior markedly different from that observed for passive atmospheric pollutants. For relevant prediction of dense gas dispersion, the gravity and entrainment effects need to implemented. The model deals with negative buoyancy which is affected by gravity. Also, the model is subjected to entrainment. The mean downward motion of each particle was accounted for by considering the Langevin equation with buoyancy correction term.

  • PDF

천수에서 2차원 수치파 수조에 대한 계산 (A Numerical Study on 2-Dimensuional Tank with Shallow Draft)

  • 임춘규
    • 한국해양공학회지
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2000
  • A numerical analysis for wave motion in the shallow water is presented. The method is based on potential theory. The fully nonlinear free surface boundary condition is assumed in an inner domain and this solution is matched along an assumed common boundary to a linear solution in outer domain. In two-dimensional problem Cauchy's integral theorem is applied to calculate the complex potential and its time derivative along boundary.

  • PDF

내부 유체 유동을 포함한 해저 파이프 라인의 인장 굽힘 비틀림 운동 방정식 (The Equations of Motion for the Stretcthing, Bending and Twisting of a Marine Pipeline Containing Flowing Fluids)

  • 서영태
    • 한국해양공학회지
    • /
    • 제8권2호
    • /
    • pp.151-156
    • /
    • 1994
  • The equations of motion of a submarine pipeline with the internal flowing fluid and subject to hydrodynamic loadings are derived by using Hamilton's principle. Coupling between the bending and the longitudinal extension due to axial load and thermal expansion are considered. Coupling between the twisting and extension are not considered. The equations of motion are well agreed with the results which are derived by the vector method.

  • PDF

정수계획 모형에서 라그란지안 구조정의 및 완화를 지원하는 지능형 시스템의개발 (Development of an intelligent system for Lagrangian structural identification and relaxation for integer programmings)

  • 김철수;이재규;김민용
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 1995년도 추계학술대회발표논문집; 서울대학교, 서울; 30 Sep. 1995
    • /
    • pp.300-324
    • /
    • 1995
  • This research investigates the automatic identification of typical embedded structures in the Integer Programming(IP) models and automatic transformation of the problem to an adequate Lagrangian problem which can provide tight bounds within the acceptable run time. For this purpose, the structural distinctiveness of variables, constants, blocks of terms, and constraint chunks is identified to describe the structure of the IP model. To assist the identification of the structural distinctiveness, the representation by the knowledge based IP model formulator UNIK-IP is adopted. For the reasoning for the structural identification, the bottom-up, top-down, and case-based approaches are proposed. A prototype system UNIK-RELAX is developed to implement the approaches proposed in this research.

  • PDF

난류채널유동의 라그란지안 해석 (I)- 입자추적 알고리듬 평가 - (Lagrangian Investigation of Turbulent Channel Flow (I) - An Assessment of Particle Tracking Algorithms -)

  • 최정일;이창훈
    • 대한기계학회논문집B
    • /
    • 제27권7호
    • /
    • pp.859-866
    • /
    • 2003
  • The Lagrangian dispserion of fluid particles in inhomogeneous turbulence is investigated by a direct numerical simulation of turbulent channel flow. Fluid particle velocity and acceleration along a particle trajectory are computed by employing several interpolation schemes such as linear interpolation, high-order Lagrange polynomial interpolation and the Hermite interpolation schemes. The performances of the schemes are evaluated through comparison of errors in computed particle positions, velocities and accelerations against spectral interpolation. Adopting the four-point Hermite interpolation in the homogeneous directions and Chebyshev polynomials in the wall-normal direction appears to produce most reliable Lagrangian statistics including acceleration correlations with a reasonable amount of computational overhead.