Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.
고객이 온라인으로 요청한 명함을 자동으로 명함을 인쇄하는 스마트 명함 인쇄 시스템이 활성화되고 있다. 이때, 문제는 고객이 시스템에 제출한 명함이 비정상일 수 있다는 것이다. 본 논문에서는 인공 지능 기술을 도입하여 명함의 이미지가 비정상적으로 회전됐는지 여부를 판정하는 문제를 다룬다. 명함은 0도, 90도, 180도, 270도 회전한다고 가정하였다. 특별한 인공신경망을 설계하지 않고 기존의 VGG, ResNet, DenseNet 인공신경망을 적용하여 실험하였는데 모든 신경망이 97% 정도의 정확도로 이미지 회전을 분별할 수 있었다. DenseNet161은 97.9%의 정확도를 보였고 ResNet34도 97.2%의 정밀도를 보였다. 이는 문제가 단순할 경우, 복잡한 인공신경망이 아니어도 충분히 좋은 결과를 낼 수 있음을 시사한다.
본 논문에서는 에어포일의 좌표 데이터에 대해 공력 특성을 예측할 수 있는 합성곱 신경망 기반 네트워크 프레임 워크를 설계하였으며 Xfoil을 이용한 공력 데이터를 적용하여 네트워크의 가능성을 확인하였다. 이 때 에어포일의 두께 변화에 따른 공력 특성 예측을 수행하였다. 부호화 거리 함수를 이용하여 에어포일의 좌표 데이터를 이미지 데이터로 변환하였으며 받음각 정보를 반영하였다. 또한 에어포일의 압력 계수 분포를 축소 모델 기법 중 하나인 적합 직교 분해를 이용하여 축소된 데이터로 표현하였으며 이를 네트워크의 출력 데이터로 사용하였다. 제시하는 네트워크의 내삽과 외삽 성능을 평가하기 위하여 시험 데이터를 구성하였고, 결과적으로 내삽 데이터에 대한 예측 성능이 외삽에 비해 우수함을 확인하였다.
A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.
전방충돌 방지 보조 또는 지능형 주행 제어 기능 등이 현대의 자동차에 탑재됨에 따라 차에서 교환되는 데이터 양이 급증하고 있다. 따라서, 기존의 CAN 통신으로는 전송속도의 한계가 있어 넓은 대역폭과 양방향 통신을 지원하는 오토모티브 이더넷, 특히 SOME/IP가 널리 채택되고 있다. SOME/IP는 다양한 자동차 운영체제와 호환되는 표준 프로토콜로 차내 구성 요소간의 연결성을 높여준다. 하지만 SOME/IP 자체에는 암호화나 인증이 구현되어 있지 않아 악의적인 패킷 주입, 프로토콜 위반과 같은 공격에 취약한 문제가 있다. 본 논문에서는, 이러한 공격들을 효과적으로 탐지하기 위해 SOME/IP에서 딥러닝 기반의 침입탐지 시스템을 제안하였다. 제안된 침입탐지시스템의 성능을 6가지 공격 패턴을 활용하여 테스트 하였고 정확도 94%, 6가지 공격의 평균 F1-score은 0.94로 높은 성능을 달성할 수 있었다.
VMS (variable message signs) 시스템이 악의적인 공격에 노출되어 교통안전과 관련된 거짓 정보를 출력하게 된다면 운전자에게 심각한 위험을 초래할 수 있다. 이러한 경우를 방지하기 위해 VMS 시스템에 사용되는 메시지들을 수집하여 평상시의 패턴을 학습한다면 VMS 시스템에 출력될 수 있는 이상 메시지를 빠르게 감지하고 이에 대한 대응을 할 수 있을 것이다. 본 논문에서는 양방향 GPT (generative pre-trained transformer) 모델을 이용하여 VMS 메시지의 평상 시 패턴을 학습한 후 이상 메시지를 탐지하는 기법을 제안한다. 구체적으로, 제안된 기법에 VMS 메시지 및 시스템 파라미터를 입력 하고 이에 대한 NLL (negative log likelihood) 값을 최소화하도록 학습한다. 학습이 완료되면 판정해야 할 대상의 NLL 값을 계산한 후, 문턱치 값 이상일 경우 이를 이상으로 판정한다. 실험 결과를 통해, 공격에 의한 악의적인 메시지 탐지뿐만 아니라 시스템의 오류가 발생하는 상황에 대한 탐지도 가능함을 보였다.
최근 빠른 유행의 변화 속에서 디자인의 변화는 패션기업의 매출에 큰 영향을 미치기 때문에 기업들은 신제품디자인 선택에 신중할 수밖에 없다. 최근 인공지능 분야의 발달에 따라 패션시장에서도 소비자들의 선호도를 높이기 위해 다양한 기계학습을 많이 활용하고 있다. 우리는 선호도와 같은 추상적인 개념을 수치화함으로써 신제품 개발에 신뢰성을 높이는 부분에 기여하고자 한다. 이를 위해 3가지 적대적 생성 신경망(Generative adversial netwrok, GAN)을 통하여 기존에 없는 새로운 이미지를 생성하고, 미리 훈련된 합성곱 신경망(Convolution neural networkm, CNN)을 이용하여 선호도라는 추상적인 개념을 수치화시켜 비교하였다. 심층 컨볼루션 적대적 생성 신경망(Deep convolutional generative adversial netwrok, DCGAN), 점진적 성장 적대적 생성 신경망(Progressive growing generative adversial netwrok, PGGAN), 이중 판별기 적대적 생성 신경망(Dual Discriminator generative adversial netwrok, D2GAN)의 3가지 방법을 통해 새로운 이미지를 생성하였고, 판매량이 높았던 제품으로 훈련된 합성곱 신경망으로 유사도를 비교, 측정하였다. 측정된 유사도의 정도를 선호도로 간주하였으며 실험 결과 D2GAN이 DCGAN, PGGAN에 비해 상대적으로 높은 유사도를 보여주었다.
본 논문에서는 학습자들의 효율적인 학습을 돕는 온라인 학습 도구 애플리케이션을 웹사이트로 제공하고자 한다. 인출, 체계화, 메타인지, 이 세 가지 측면에서 학습자들의 학습 효율을 어떻게 향상시킬 수 있는지에 대해 논의하고자 하며, 본 웹 서비스를 통해 학습자는 플래시 카드 기반의 인출 학습법으로 학습을 진행할 수 있다. 이때, 합성 패턴(Composite Pattern)을 사용하여 플래시 카드를 Directory-File System과 유사한 형태로 관리하는 방법에 대해 서술한다. 학습자는 플래시 카드를 마인드맵으로 변환하여 지식을 체계적으로 정리할 수 있다. 학습자의 학습진행도에 따라 마인드맵의 색상이 달라지며, 학습자는 자신이 무엇을 알고 무엇을 모르는 지 색상을 통해 쉽게 인지할 수 있다. 이때, 학습진행도를 판단하고 예측하는 알고리즘의 정확도를 향상시키기 위한 딥 러닝 모델 구축을 제안한다.
본 논문에서는 컨볼루션 신경망 네트워크를 이용하여 VVC 화면 내 예측으로 얻은 예측 블록을 개선하여 잔차 신호를 보다 줄이는 화면 내 예측 방법을 제안한다. 기존의 화면 내 예측 방법은 일부 고정 규칙을 기반으로 주변의 재구성된 참조 샘플로부터 예측 블록을 생성하므로 복잡한 콘텐츠의 예측 블록을 생성하기 어렵다는 한계가 있다. 또한, 참조 샘플로 이용할 수 있는 정보의 양이 시간적 주변 정보에 비해 적기 때문에 화면 간 예측보다 낮은 부호화 성능을 가진다. 본 연구에서는 앞서 언급한 문제를 해결하기 위해 기존의 비디오 부호화 과정의 화면 내 예측을 통해 생성되는 예측 블록에 CNN을 적용하여 원본 블록과 예측 블록의 차분 신호를 줄이는 화면 내 예측 방법을 제안한다. 부호기에서는 제안 알고리즘의 활성 여부를 나타내는 플래그가 함께 부호화된다. 제안하는 화면 내 예측 방법은 최신 비디오 압축 표준인 Versatile Video Coding의 참조 모델인 VTM version 10.0 대비 휘도 성분에 대하여 향상된 압축 성능을 제공한다.
본 논문은 메타버스 등 인공지능 연계 증강/가상현실 부동 중계 플랫폼에서 부동산 영상 기반 매물 소개 시스템 구축에서 사생활 및 개인정보가 영상에 담기게 될 수 있는 위험이 존재하기에 부동산 영상 내의 개인정보 및 민감 정보를 인공지능 기술을 기반으로 검출하여 삭제해주고 복원해주는 인공지능 기술 연구개발을 목표로 하였다. 한국형 부동산 내 민감 object 를 정의하고, 최신 인공지능 딥러닝 기술 기반 민감 object detection 알고리즘을 연구 개발하며, 영상에서 삭제된 부분은 인공지능 기술을 기반으로 물체가 없는 실제 공간영상으로 복원해주는 영상복원 기술도 연구 개발하였다. 한국형 부동산 환경 (영상 촬영 조도, 디스플레이 스타일, 주변 가구 배치 등)에 맞는 인공지능 모델 구축을 위하여, 자체적으로 한국 영상 database 구축 및 Transfer learning for target domain adaptation 을 진행하였다. 제안된 알고리즘은 일반적인 환경에서 98%의 정확도와 challenge 환경에서 (occlusion 빛 반사, 저조도 등) 81%의 정확도를 보였다. 본 기술은 Proptech 분야에서 주목받고 있는 메타버스 기반 온라인 중계 서비스 기술을 활성화하기 위하여 기획되었으며, 특히 메타버스 부동산 중계 플랫폼의 활성화를 위하여 사생활 보호 측면에서 필요한 중요 기술을 인공지능 기술을 활용하여 연구 개발하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.