• 제목/요약/키워드: 딥-러닝 모델

검색결과 2,119건 처리시간 0.035초

베이지안 딥러닝 기법을 이용한 확률적 적설심 예측 모델 개발 (Development of a Stochastic Snow Depth Prediction Model Using a Bayesian Deep Learning Method)

  • 정영준;이상익;이종혁;서병훈;김동수;서예진;최원
    • 한국농공학회논문집
    • /
    • 제64권6호
    • /
    • pp.35-41
    • /
    • 2022
  • Heavy snow damage can be prevented in advance with an appropriate security system. To develop the security system, we developed a model that predicts snow depth after a few hours when the snow depth is observed, and utilized it to calculate a failure probability with various types of greenhouses and observed snow depth data. We compared the Markov chain model and Bayesian long short-term memory models with varying input data. Markov chain model showed the worst performance, and the models that used only past snow depth data outperformed the models that used other weather data with snow depth (temperature, humidity, wind speed). Also, the models that utilized 1-hour past data outperformed the models that utilized 3-hour data and 6-hour data. Finally, the Bayesian LSTM model that uses 1-hour snow depth data was selected to predict snow depth. We compared the selected model and the shifting method, which uses present data as future data without prediction, and the model outperformed the shifting method when predicting data after 11-24 hours.

명함 이미지 회전 판단을 위한 딥러닝 모델 비교 (Comparison of Deep Learning Models for Judging Business Card Image Rotation)

  • 경지훈
    • 한국정보통신학회논문지
    • /
    • 제27권1호
    • /
    • pp.34-40
    • /
    • 2023
  • 고객이 온라인으로 요청한 명함을 자동으로 명함을 인쇄하는 스마트 명함 인쇄 시스템이 활성화되고 있다. 이때, 문제는 고객이 시스템에 제출한 명함이 비정상일 수 있다는 것이다. 본 논문에서는 인공 지능 기술을 도입하여 명함의 이미지가 비정상적으로 회전됐는지 여부를 판정하는 문제를 다룬다. 명함은 0도, 90도, 180도, 270도 회전한다고 가정하였다. 특별한 인공신경망을 설계하지 않고 기존의 VGG, ResNet, DenseNet 인공신경망을 적용하여 실험하였는데 모든 신경망이 97% 정도의 정확도로 이미지 회전을 분별할 수 있었다. DenseNet161은 97.9%의 정확도를 보였고 ResNet34도 97.2%의 정밀도를 보였다. 이는 문제가 단순할 경우, 복잡한 인공신경망이 아니어도 충분히 좋은 결과를 낼 수 있음을 시사한다.

에어포일 공력 성능 예측을 위한 딥러닝 기반 방법론 연구 (Deep learning-based Approach for Prediction of Airfoil Aerodynamic Performance)

  • 천성우;정호진;박민규;정인호;조해성;기영중
    • 항공우주시스템공학회지
    • /
    • 제16권4호
    • /
    • pp.17-27
    • /
    • 2022
  • 본 논문에서는 에어포일의 좌표 데이터에 대해 공력 특성을 예측할 수 있는 합성곱 신경망 기반 네트워크 프레임 워크를 설계하였으며 Xfoil을 이용한 공력 데이터를 적용하여 네트워크의 가능성을 확인하였다. 이 때 에어포일의 두께 변화에 따른 공력 특성 예측을 수행하였다. 부호화 거리 함수를 이용하여 에어포일의 좌표 데이터를 이미지 데이터로 변환하였으며 받음각 정보를 반영하였다. 또한 에어포일의 압력 계수 분포를 축소 모델 기법 중 하나인 적합 직교 분해를 이용하여 축소된 데이터로 표현하였으며 이를 네트워크의 출력 데이터로 사용하였다. 제시하는 네트워크의 내삽과 외삽 성능을 평가하기 위하여 시험 데이터를 구성하였고, 결과적으로 내삽 데이터에 대한 예측 성능이 외삽에 비해 우수함을 확인하였다.

관개용수로 CCTV 이미지를 이용한 CNN 딥러닝 이미지 모델 적용 (Application of CCTV Image and Semantic Segmentation Model for Water Level Estimation of Irrigation Channel)

  • 김귀훈;김마가;윤푸른;방재홍;명우호;최진용;최규훈
    • 한국농공학회논문집
    • /
    • 제64권3호
    • /
    • pp.63-73
    • /
    • 2022
  • A more accurate understanding of the irrigation water supply is necessary for efficient agricultural water management. Although we measure water levels in an irrigation canal using ultrasonic water level gauges, some errors occur due to malfunctions or the surrounding environment. This study aims to apply CNN (Convolutional Neural Network) Deep-learning-based image classification and segmentation models to the irrigation canal's CCTV (Closed-Circuit Television) images. The CCTV images were acquired from the irrigation canal of the agricultural reservoir in Cheorwon-gun, Gangwon-do. We used the ResNet-50 model for the image classification model and the U-Net model for the image segmentation model. Using the Natural Breaks algorithm, we divided water level data into 2, 4, and 8 groups for image classification models. The classification models of 2, 4, and 8 groups showed the accuracy of 1.000, 0.987, and 0.634, respectively. The image segmentation model showed a Dice score of 0.998 and predicted water levels showed R2 of 0.97 and MAE (Mean Absolute Error) of 0.02 m. The image classification models can be applied to the automatic gate-controller at four divisions of water levels. Also, the image segmentation model results can be applied to the alternative measurement for ultrasonic water gauges. We expect that the results of this study can provide a more scientific and efficient approach for agricultural water management.

SOME/IP 에서의 시퀀셜 모델 기반 침입탐지 시스템 (Intrusion Detection System Based on Sequential Model in SOME/IP)

  • 강연재;피대권;김해린;이상호;김휘강
    • 정보보호학회논문지
    • /
    • 제32권6호
    • /
    • pp.1171-1181
    • /
    • 2022
  • 전방충돌 방지 보조 또는 지능형 주행 제어 기능 등이 현대의 자동차에 탑재됨에 따라 차에서 교환되는 데이터 양이 급증하고 있다. 따라서, 기존의 CAN 통신으로는 전송속도의 한계가 있어 넓은 대역폭과 양방향 통신을 지원하는 오토모티브 이더넷, 특히 SOME/IP가 널리 채택되고 있다. SOME/IP는 다양한 자동차 운영체제와 호환되는 표준 프로토콜로 차내 구성 요소간의 연결성을 높여준다. 하지만 SOME/IP 자체에는 암호화나 인증이 구현되어 있지 않아 악의적인 패킷 주입, 프로토콜 위반과 같은 공격에 취약한 문제가 있다. 본 논문에서는, 이러한 공격들을 효과적으로 탐지하기 위해 SOME/IP에서 딥러닝 기반의 침입탐지 시스템을 제안하였다. 제안된 침입탐지시스템의 성능을 6가지 공격 패턴을 활용하여 테스트 하였고 정확도 94%, 6가지 공격의 평균 F1-score은 0.94로 높은 성능을 달성할 수 있었다.

양방향 GPT 네트워크를 이용한 VMS 메시지 이상 탐지 (Detection of Anomaly VMS Messages Using Bi-Directional GPT Networks)

  • 최효림;박승영
    • 한국ITS학회 논문지
    • /
    • 제21권4호
    • /
    • pp.125-144
    • /
    • 2022
  • VMS (variable message signs) 시스템이 악의적인 공격에 노출되어 교통안전과 관련된 거짓 정보를 출력하게 된다면 운전자에게 심각한 위험을 초래할 수 있다. 이러한 경우를 방지하기 위해 VMS 시스템에 사용되는 메시지들을 수집하여 평상시의 패턴을 학습한다면 VMS 시스템에 출력될 수 있는 이상 메시지를 빠르게 감지하고 이에 대한 대응을 할 수 있을 것이다. 본 논문에서는 양방향 GPT (generative pre-trained transformer) 모델을 이용하여 VMS 메시지의 평상 시 패턴을 학습한 후 이상 메시지를 탐지하는 기법을 제안한다. 구체적으로, 제안된 기법에 VMS 메시지 및 시스템 파라미터를 입력 하고 이에 대한 NLL (negative log likelihood) 값을 최소화하도록 학습한다. 학습이 완료되면 판정해야 할 대상의 NLL 값을 계산한 후, 문턱치 값 이상일 경우 이를 이상으로 판정한다. 실험 결과를 통해, 공격에 의한 악의적인 메시지 탐지뿐만 아니라 시스템의 오류가 발생하는 상황에 대한 탐지도 가능함을 보였다.

신제품 개발을 위한 GAN 기반 생성모델 성능 비교 (Performance Comparisons of GAN-Based Generative Models for New Product Development)

  • 이동훈;이세훈;강재모
    • 문화기술의 융합
    • /
    • 제8권6호
    • /
    • pp.867-871
    • /
    • 2022
  • 최근 빠른 유행의 변화 속에서 디자인의 변화는 패션기업의 매출에 큰 영향을 미치기 때문에 기업들은 신제품디자인 선택에 신중할 수밖에 없다. 최근 인공지능 분야의 발달에 따라 패션시장에서도 소비자들의 선호도를 높이기 위해 다양한 기계학습을 많이 활용하고 있다. 우리는 선호도와 같은 추상적인 개념을 수치화함으로써 신제품 개발에 신뢰성을 높이는 부분에 기여하고자 한다. 이를 위해 3가지 적대적 생성 신경망(Generative adversial netwrok, GAN)을 통하여 기존에 없는 새로운 이미지를 생성하고, 미리 훈련된 합성곱 신경망(Convolution neural networkm, CNN)을 이용하여 선호도라는 추상적인 개념을 수치화시켜 비교하였다. 심층 컨볼루션 적대적 생성 신경망(Deep convolutional generative adversial netwrok, DCGAN), 점진적 성장 적대적 생성 신경망(Progressive growing generative adversial netwrok, PGGAN), 이중 판별기 적대적 생성 신경망(Dual Discriminator generative adversial netwrok, D2GAN)의 3가지 방법을 통해 새로운 이미지를 생성하였고, 판매량이 높았던 제품으로 훈련된 합성곱 신경망으로 유사도를 비교, 측정하였다. 측정된 유사도의 정도를 선호도로 간주하였으며 실험 결과 D2GAN이 DCGAN, PGGAN에 비해 상대적으로 높은 유사도를 보여주었다.

효과적인 학습을 위한 메타인지 기반의 온라인 학습 도구 웹사이트 구축 (Development of Metacognitive-Based Online Learning Tools Website for Effective Learning)

  • 이현준;빈기범;김은서;문일영
    • 실천공학교육논문지
    • /
    • 제14권2호
    • /
    • pp.351-359
    • /
    • 2022
  • 본 논문에서는 학습자들의 효율적인 학습을 돕는 온라인 학습 도구 애플리케이션을 웹사이트로 제공하고자 한다. 인출, 체계화, 메타인지, 이 세 가지 측면에서 학습자들의 학습 효율을 어떻게 향상시킬 수 있는지에 대해 논의하고자 하며, 본 웹 서비스를 통해 학습자는 플래시 카드 기반의 인출 학습법으로 학습을 진행할 수 있다. 이때, 합성 패턴(Composite Pattern)을 사용하여 플래시 카드를 Directory-File System과 유사한 형태로 관리하는 방법에 대해 서술한다. 학습자는 플래시 카드를 마인드맵으로 변환하여 지식을 체계적으로 정리할 수 있다. 학습자의 학습진행도에 따라 마인드맵의 색상이 달라지며, 학습자는 자신이 무엇을 알고 무엇을 모르는 지 색상을 통해 쉽게 인지할 수 있다. 이때, 학습진행도를 판단하고 예측하는 알고리즘의 정확도를 향상시키기 위한 딥 러닝 모델 구축을 제안한다.

VVC 화면 내 예측에서의 딥러닝 기반 예측 블록 개선을 통한 부호화 효율 향상 기법 (Accurate Prediction of VVC Intra-coded Block using Convolutional Neural Network)

  • 정혜선;강제원
    • 방송공학회논문지
    • /
    • 제27권4호
    • /
    • pp.477-486
    • /
    • 2022
  • 본 논문에서는 컨볼루션 신경망 네트워크를 이용하여 VVC 화면 내 예측으로 얻은 예측 블록을 개선하여 잔차 신호를 보다 줄이는 화면 내 예측 방법을 제안한다. 기존의 화면 내 예측 방법은 일부 고정 규칙을 기반으로 주변의 재구성된 참조 샘플로부터 예측 블록을 생성하므로 복잡한 콘텐츠의 예측 블록을 생성하기 어렵다는 한계가 있다. 또한, 참조 샘플로 이용할 수 있는 정보의 양이 시간적 주변 정보에 비해 적기 때문에 화면 간 예측보다 낮은 부호화 성능을 가진다. 본 연구에서는 앞서 언급한 문제를 해결하기 위해 기존의 비디오 부호화 과정의 화면 내 예측을 통해 생성되는 예측 블록에 CNN을 적용하여 원본 블록과 예측 블록의 차분 신호를 줄이는 화면 내 예측 방법을 제안한다. 부호기에서는 제안 알고리즘의 활성 여부를 나타내는 플래그가 함께 부호화된다. 제안하는 화면 내 예측 방법은 최신 비디오 압축 표준인 Versatile Video Coding의 참조 모델인 VTM version 10.0 대비 휘도 성분에 대하여 향상된 압축 성능을 제공한다.

메타버스 내 원격 부동산 중계 시스템을 위한 부동산 매물 영상 내 민감정보 삭제 기술 (Privacy-preserving Proptech using Domain Adaptation in Metaverse)

  • 김준호;김진홍;강병준;최재원;김지훈;강동우
    • 한국방송∙미디어공학회:학술대회논문집
    • /
    • 한국방송∙미디어공학회 2022년도 추계학술대회
    • /
    • pp.187-190
    • /
    • 2022
  • 본 논문은 메타버스 등 인공지능 연계 증강/가상현실 부동 중계 플랫폼에서 부동산 영상 기반 매물 소개 시스템 구축에서 사생활 및 개인정보가 영상에 담기게 될 수 있는 위험이 존재하기에 부동산 영상 내의 개인정보 및 민감 정보를 인공지능 기술을 기반으로 검출하여 삭제해주고 복원해주는 인공지능 기술 연구개발을 목표로 하였다. 한국형 부동산 내 민감 object 를 정의하고, 최신 인공지능 딥러닝 기술 기반 민감 object detection 알고리즘을 연구 개발하며, 영상에서 삭제된 부분은 인공지능 기술을 기반으로 물체가 없는 실제 공간영상으로 복원해주는 영상복원 기술도 연구 개발하였다. 한국형 부동산 환경 (영상 촬영 조도, 디스플레이 스타일, 주변 가구 배치 등)에 맞는 인공지능 모델 구축을 위하여, 자체적으로 한국 영상 database 구축 및 Transfer learning for target domain adaptation 을 진행하였다. 제안된 알고리즘은 일반적인 환경에서 98%의 정확도와 challenge 환경에서 (occlusion 빛 반사, 저조도 등) 81%의 정확도를 보였다. 본 기술은 Proptech 분야에서 주목받고 있는 메타버스 기반 온라인 중계 서비스 기술을 활성화하기 위하여 기획되었으며, 특히 메타버스 부동산 중계 플랫폼의 활성화를 위하여 사생활 보호 측면에서 필요한 중요 기술을 인공지능 기술을 활용하여 연구 개발하였다.

  • PDF