• Title/Summary/Keyword: 딥러닝 지능 기술

Search Result 473, Processing Time 0.035 seconds

An Efficient Dynamic Workload Balancing Strategy (DNN을 이용한 중환자 상태 징후 조기 예측)

  • Hyun-Suk Yoon;Gil-Sik Park;Hae-Jong Joo
    • Proceedings of the Korean Society of Computer Information Conference
    • /
    • 2024.01a
    • /
    • pp.325-327
    • /
    • 2024
  • 국내외에서 AI기반 의료 솔루션 시장은 빠른 속도로 확장 중이며 이에 따른 다양한 의학 분야에서 많은 기법을 통한 의료 AI 시스템이 등장하고 있다. 그러나 기존 다양한 AI 연구가 이뤄짐에도 아직 중환자의 징후 예측에는 많은 어려움이 있다. 또한, 중환자의 경우 현재 의료진만으로 모든 환자를 필요한 시기에 진료하기엔 어려움이 있고 환자 상태 조기 예측이 필수적임을 관련 다양한 의학 기사를 통해 쉽게 인지할 수 있다. 본 연구에서는 위와 같은 문제점을 해결하고자 중환자의 진료 결과 데이터를 활용하여 환자의 진료 후 상태를 예측하는 모델을 생성하였다. '용인시산업진흥원'에서 제공하는 60만여 건에 달하는 환자 데이터를 수집하여, 중환자 상태 징후를 조기에 예측할 수 있는 머신러닝/딥러닝 기반 알고리즘으로 구현한 여러 모델에 대해 비교했을 때 딥러닝(DNN) 기반 모델이 약 92%의 분류 정확도를 측정할 수 있었다.

  • PDF

Real2Animation: A Study on the application of deepfake technology to support animation production (Real2Animation:애니메이션 제작지원을 위한 딥페이크 기술 활용 연구)

  • Dongju Shin;Bongjun Choi
    • Journal of the Institute of Convergence Signal Processing
    • /
    • v.23 no.3
    • /
    • pp.173-178
    • /
    • 2022
  • Recently, various computing technologies such as artificial intelligence, big data, and IoT are developing. In particular, artificial intelligence-based deepfake technology is being used in various fields such as the content and medical industry. Deepfake technology is a combination of deep learning and fake, and is a technology that synthesizes a person's face or body through deep learning, which is a core technology of AI, to imitate accents and voices. This paper uses deepfake technology to study the creation of virtual characters through the synthesis of animation models and real person photos. Through this, it is possible to minimize various cost losses occurring in the animation production process and support writers' work. In addition, as deepfake open source spreads on the Internet, many problems emerge, and crimes that abuse deepfake technology are prevalent. Through this study, we propose a new perspective on this technology by applying the deepfake technology to children's material rather than adult material.

Design and Implementation of Interactive Search Service based on Deep Learning and Morpheme Analysis in NTIS System (NTIS 시스템에서 딥러닝과 형태소 분석 기반의 대화형 검색 서비스 설계 및 구현)

  • Lee, Jong-Won;Kim, Tae-Hyun;Choi, Kwang-Nam
    • Journal of Convergence for Information Technology
    • /
    • v.10 no.12
    • /
    • pp.9-14
    • /
    • 2020
  • Currently, NTIS (National Technology Information Service) is building an interactive search service based on artificial intelligence technology. In order to understand users' search intentions and provide R&D information, an interactive search service is built based on deep learning models and morpheme analyzers. The deep learning model learns based on the log data loaded when using NTIS and interactive search services and understands the user's search intention. And it provides task information through step-by-step search. Understanding the search intent makes exception handling easier, and step-by-step search makes it easier and faster to obtain the desired information than integrated search. For future research, it is necessary to expand the range of information provided to users.

Presenting Direction for the Implementation of Personal Movement Trainer through Artificial Intelligence based Behavior Recognition (인공지능 기반의 행동인식을 통한 개인 운동 트레이너 구현의 방향성 제시)

  • Ha, Tae Yong;Lee, Hoojin
    • Journal of the Korea Convergence Society
    • /
    • v.10 no.6
    • /
    • pp.235-242
    • /
    • 2019
  • Recently, the use of artificial intelligence technology including deep learning has become active in various fields. In particular, several algorithms showing superior performance in object recognition and detection based on deep learning technology have been presented. In this paper, we propose the proper direction for the implementation of mobile healthcare application that user's convenience is effectively reflected. By effectively analyzing the current state of use satisfaction research for the existing fitness applications and the current status of mobile healthcare applications, we attempt to secure survival and superiority in the fitness application market, and, at the same time, to maintain and expand the existing user base.

Trend of Network Traffic Classification Using Machine Learning and Deep Learning (머신러닝과 딥러닝을 이용한 네트워크 트래픽 분류 연구 동향)

  • JungMin Lee;Yeonjoon Lee
    • Annual Conference of KIPS
    • /
    • 2023.05a
    • /
    • pp.576-578
    • /
    • 2023
  • 네트워크 트래픽 연구는 오랜 기간 지속되어 왔으며, 구현이 비교적 간단하고 높은 정확도를 가지는 기존의 분류 방식들이 오랫동안 사용되어왔다. 그러나 네트워크 기술과 암호화 기술의 발달로 기존의 분류 방식들은 더 이상 분류 결과에 대한 신뢰성을 보장할 수 없으며, 이에 따라 새로운 분류 방식의 필요성이 대두되었다. 최근 머신러닝과 딥러닝을 네트워크 트래픽 분류에 적용하는 연구가 활발히 이루어지고 있으며 획기적인 모델들이 많이 제안되었고, 그 분류 성능 또한 입증되었다. 그러나 여전히 여러 가지 극복해야 할 문제점은 남아있으며 이러한 문제점을 해결하기 위한 연구가 앞으로도 계속 진행될 것으로 보인다. 본 논문은 머신러닝과 딥러닝을 이용한 네트워크 트래픽 분류 연구 동향에 대해 살펴보고 이러한 연구들이 가지는 문제점을 짚고 넘어가며 앞으로의 네트워크 트래픽 분류 연구의 방향성에 대해 이야기 하고자 한다.

Science Technology - 딥러닝 넘은 인공지능시대 아직 멀었다!

  • Kim, Hyeong-Ja
    • TTA Journal
    • /
    • s.165
    • /
    • pp.58-59
    • /
    • 2016
  • 세간의 화제가 되었던 이세돌 9단 vs 알파고 대결. 난공불락이라 여겼던 바둑에서조차 인공지능이 승리를 거두면서 전 세계는 과학기술 발전에 놀랐고, 인공지능의 무한한 가능성에 감탄했다. 컴퓨터가 사람처럼 정보를 이해 판단하고 더 나아가 추론에 창의성까지 발휘하면서 사람들은 인공지능이 인간의 생각을 뛰어넘을 거라 생각한다. 그런데 과연 그럴까?

  • PDF

Evaluation of the predictive performance for monthly precipitation of a deep learning model for drought forecasting (가뭄 예보를 위한 딥러닝 모델의 월 강수량 예측 성능 평가)

  • Won, Jeongeun;Choi, Jeonghyeon;Kim, Sangdan
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2022.05a
    • /
    • pp.304-304
    • /
    • 2022
  • 가뭄은 인간 활동과 생태계의 다양한 측면에 영향을 미치는 중요한 자연재해 중 하나이다. 가뭄을 사전에 예측하여 필요한 완화 조치를 취하고 환경적 피해를 줄이는 것이 중요하다. 이에 따라 다양한 인공지능 기술을 이용한 가뭄 예측은 수문학, 수자원 관리, 농업 등의 분야에서 중요성이 커지고 있다. 최근에는 딥러닝 알고리즘을 기반으로 하는 중장기 강수예보를 위한 다양한 방법이 제시되고 있다. 이 논문의 목적은 가뭄 예보를 목적으로 월 강수량 예측을 위한 딥러닝 모델의 성능을 평가하는 것이다. 이를 위해 딥러닝 모델인 LSTM(Long Short-Term Memory)을 적용하였으며, 1981-2020년 기간의 월 강수 자료가 모델을 구축하기 위해 사용되었다. 관측자료를 기반으로 학습된 모델을 이용하여 테스트 기간에 대해 월 강수량을 예측하였다. 예측된 강수량을 통해 표준강수지수(Standardized Precipitation Index, SPI)을 산정하고, 예측 정확도를 분석하였다. 이 연구는 가뭄 예보를 위한 딥러닝 모델의 적용 가능성을 보여준다.

  • PDF

A deep learning analysis of the KOSPI's directions (딥러닝분석과 기술적 분석 지표를 이용한 한국 코스피주가지수 방향성 예측)

  • Lee, Woosik
    • Journal of the Korean Data and Information Science Society
    • /
    • v.28 no.2
    • /
    • pp.287-295
    • /
    • 2017
  • Since Google's AlphaGo defeated a world champion of Go players in 2016, there have been many interests in the deep learning. In the financial sector, a Robo-Advisor using deep learning gains a significant attention, which builds and manages portfolios of financial instruments for investors.In this paper, we have proposed the a deep learning algorithm geared toward identification and forecast of the KOSPI index direction,and we also have compared the accuracy of the prediction.In an application of forecasting the financial market index direction, we have shown that the Robo-Advisor using deep learning has a significant effect on finance industry. The Robo-Advisor collects a massive data such as earnings statements, news reports and regulatory filings, analyzes those and recommends investors how to view market trends and identify the best time to purchase financial assets. On the other hand, the Robo-Advisor allows businesses to learn more about their customers, develop better marketing strategies, increase sales and decrease costs.

DeepBlock: Web-based Deep Learning Education Platform (딥블록: 웹 기반 딥러닝 교육용 플랫폼)

  • Cho, Jinsung;Kim, Geunmo;Go, Hyunmin;Kim, Sungmin;Kim, Jisub;Kim, Bongjae
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.21 no.3
    • /
    • pp.43-50
    • /
    • 2021
  • Recently, researches and projects of companies based on artificial intelligence have been actively carried out. Various services and systems are being grafted with artificial intelligence technology. They become more intelligent. Accordingly, interest in deep learning, one of the techniques of artificial intelligence, and people who want to learn it have increased. In order to learn deep learning, deep learning theory with a lot of knowledge such as computer programming and mathematics is required. That is a high barrier to entry to beginners. Therefore, in this study, we designed and implemented a web-based deep learning platform called DeepBlock, which enables beginners to implement basic models of deep learning such as DNN and CNN without considering programming and mathematics. The proposed DeepBlock can be used for the education of students or beginners interested in deep learning.