Syntactic information represents the dependency relation between predicates and arguments, and it is helpful for improving the performance of Semantic Role Labeling systems. However, syntax analysis can cause computational overhead and inherit incorrect syntactic information. To solve this problem, we exclude syntactic information and use only morpheme information to construct Semantic Role Labeling systems. In this study, we propose an end-to-end SRL system that only uses morpheme information with Stacked Bidirectional LSTM-CRFs model by extending the LSTM RNN that is suitable for sequence labeling problem. Our experimental results show that our proposed model has better performance, as compare to other models.
Due to the 4th industrial revolution and an aged society, many studies are being conducted to apply virtual reality to medical field. Research on dementia is especially active. This paper proposes virtual reality based on cognitive rehabilitation contents using image recognition and clustering method to improve cognitive and physical disabilities caused by dementia. Unlike the existing cognitive rehabilitation system, this paper uses travel photos that reflect the memories of the subjects to be treated. In order to generate automated cognitive rehabilitation contents, we extract face information, food pictures, place information, and time information from photographs, and normalization is performed for clustering. And we present scenarios that can be used as cognitive rehabilitation contents using travel photos in virtual reality space.
In this paper, we propose Intelligent Driver Assistance System (I-DAS) for driver safety. The proposed system recognizes safety and danger status by analyzing blind spots that the driver cannot see because of a large angle of head movement from the front. Most studies use image pre-processing such as face detection for collecting information about the driver's head movement. This not only increases the computational complexity of the system, but also decreases the accuracy of the recognition because the image processing system dose not use the entire image of the driver's upper body while seated on the driver's seat and when the head moves at a large angle from the front. The proposed system uses a convolutional neural network to replace the face detection system and uses the entire image of the driver's upper body. Therefore, high accuracy can be maintained even when the driver performs head movement at a large angle from the frontal gaze position without image pre-processing. Experimental result shows that the proposed system can accurately recognize the dangerous conditions in the blind zone during operation and performs with 95% accuracy of recognition for five drivers.
Kim, Hanguen;Kim, Donghoon;Park, Byeolteo;Lee, Seung-Mok
IEMEK Journal of Embedded Systems and Applications
/
v.15
no.2
/
pp.71-78
/
2020
This paper proposes vision sensors and deep learning-based around view monitoring system for ship berthing. Ship berthing to the port requires precise relative position and relative speed information between the mooring facility and the ship. For ships of Handysize or higher, the vesselships must be docked with the help of pilots and tugboats. In the case of ships handling dangerous cargo, tug boats push the ship and dock it in the port, using the distance and velocity information receiving from the berthing aid system (BAS). However, the existing BAS is very expensive and there is a limit on the size of the vessel that can be measured. Also, there is a limitation that it is difficult to measure distance and speed when there are obstacles near the port. This paper proposes a relative distance and speed estimation system that can be used as a ship berthing assist system. The proposed system is verified by comparing the performance with the existing laser-based distance and speed measurement system through the field tests at the actual port.
Proceedings of the Korea Technology Innovation Society Conference
/
2017.11a
/
pp.715-721
/
2017
기술거래 시장의 활성화에 대한 연구개발서비스 분야 종사자들의 관심이 높아지고 있으며, 특히 공공 및 민간 분야의 휴면 기술(특허)에 대한 이전 거래를 통해 불필요한 특허유지 비용을 줄이고 부가적인 기술료 창출 효과를 거둘 수 있다. 본 연구에서는 현재까지 기술이전(거래), 현물출자, 기술금융(융자, 담보대출) 등 다양한 목적으로 실무에서 활용되어 온 기술가치평가 모형의 한계점을 고민해 보고, 이에 대한 개선방안으로서 몬테카를로 최소자승법 기반의 확률론적 가치평가 모형을 제시한다. 기존의 가치평가 모형은 평가산출을 위한 입력변수의 확정적 값들에 기반하여 가치액이 산출되었으나, 대표적 기법인 현금흐름 할인법이나 로열티공제법의 경우 미래의 수익예상기간, 예상매출액 등에서는 불확실성(uncertainty)가 내재되어 있다. 따라서 특정 분포(distribution)에 대한 확률론적 가능성을 가정하고 이에 대한 수학적 최적화 논리로부터 몬테카를로 최소자승 관게에 의한 변수결정 및 가치평가액 산정을 할 수 있는 평가모듈을 개발한다. 향후 연구에서는 기 평가된 사례결과를 딥러닝(deep learning) 방식으로 학습하여, 발생가능성 높은 각 변수값의 범위들을 산출하고 이로부터 기술가치 범위를 추론하는 시스템을 개발하는 것도 가능할 것으로 기대된다.
Proceedings of the Korean Institute of Information and Commucation Sciences Conference
/
2018.10a
/
pp.342-344
/
2018
This paper shows the possibility to substitute statistical methods such as mean imputation, correlation coefficient analysis, graph correlation analysis for the proposed algorithm, and replace statistician for processing various abnormal data measured in the water treatment process with it. In addition, this study aims to model a data-filtering system based on a recent fractile pattern and a deep learning-based LSTM algorithm in order to improve the reliability and validation of the algorithm, using the open-sourced libraries such as KERAS, THEANO, TENSORFLOW, etc.
Journal of the Korea Institute of Information Security & Cryptology
/
v.29
no.6
/
pp.1393-1401
/
2019
Recently as voice authentication function is installed in the system, it is becoming more important to accurately authenticate speakers. Accordingly, a model for verifying speakers in various ways has been suggested. In this paper, we propose a new method for verifying speaker verification using a Short-time Fourier Transform(STFT). Unlike the existing Mel-Frequency Cepstrum Coefficients(MFCC) extraction method, we used window function with overlap parameter of around 66.1%. In this case, the speech characteristics of the speaker with the temporal characteristics are studied using a deep running model called RNN (Recurrent Neural Network) with LSTM cell. The accuracy of proposed model is around 92.8% and approximately 5.5% higher than that of the existing speaker certification model.
Kim, Ye-Jin;Lee, Soo-Yeon;Sim, Kyu-Min;Jun, Kyung-Koo
Annual Conference of KIPS
/
2019.10a
/
pp.946-949
/
2019
한 벌의 한글 글자체를 만드는데 일반적으로 많은 제작 비용과 시간이 소요된다. 따라서 폰트 제작의 어려움을 덜기 위해, 사용자가 대표 글자들을 입력하면 그 글자들의 디자인 특성을 딥러닝 기술을 이용하여 학습한 모델이 나머지 글자들을 자동 생성해주는 시스템 구축한다면 폰트 제작이 훨씬 용이해질 뿐만 아니라 저작권 문제로부터 자유로워질 것이다. 이와 관련된 선행연구를 실행하고 분석해 본 결과 데이터 전처리 과정에서 글자가 잘리거나 크기가 맞지 않아 제대로 된 데이터셋이 구축되지 않는 문제가 있음을 발견하였다. 본 논문에서는 이러한 문제를 해결하기 위해 템플릿에서 자동적으로 글자영역을 추출하고 이미지를 보정하는 전처리 과정과 함께 기존 모델에서 새로운 필터를 추가하여 학습 성능을 높이는 방법을 제안한다. 이를 통해 기존 연구에서 측정된 손실값을 낮춘 결과를 확인했으며 결과적으로 실제 글자체와 더욱 유사한 사용자 맞춤형 글자체를 제공할 수 있을 것이다.
Journal of Korea Society of Digital Industry and Information Management
/
v.17
no.4
/
pp.53-62
/
2021
Deep learning models such as convolutional neural networks and recurrent neual networks process a huge amounts of data, so they require a lot of storage and consume a lot of time and power due to memory access. Recently, research is being conducted to reduce memory usage and access by compressing data using the feature that many of deep learning data are highly sparse and localized. In this paper, we propose a compression-decompression method of storing only the non-zero data and the location information of the non-zero data excluding zero data. In order to make the location information of non-zero data, the matrix data is divided into sections uniformly. And whether there is non-zero data in the corresponding section is indicated. In this case, section division is not executed only once, but repeatedly executed, and location information is stored in each step. Therefore, it can be properly compressed according to the ratio and distribution of zero data. In addition, we propose a hardware structure that enables compression and decompression without complex operations. It was designed and verified with Verilog, and it was confirmed that it can be used in hardware deep learning accelerators.
Recently, several ICT-based cat studies have produced some successful results, according to academic and industry sources. However, research on the level of simply identifying the cat's condition, such as the behavior and sound classification of cats based on images and sound signals, has yet to be found. In this paper, based on the veterinary scientific knowledge of cats, a practical and academic cat monitoring and disease diagnosis system is proposed to monitor the health status of the cat 24 hours a day by automatically categorizing and analyzing the behavior of the cat with location information using LSTM with a beacon sensor and a raspberry pie that can be built at low cost. Validity of the proposed system is verified through experimentation with cats in actual custody (the accuracy of the cat behavior classification and location identification was 96.3% and 92.7% on average, respectively). Furthermore, a rule-based disease analysis system based on the veterinary knowledge was designed and implemented so that owners can check whether or not the cats have diseases at home (or can be used as an auxiliary tool for diagnosis by a pet veterinarian).
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.