Kim, Jinsung;Jang, Seun;Kim, Jungjun;Kim, Dasom;Cho, Joongwhee
Annual Conference of KIPS
/
2017.11a
/
pp.842-844
/
2017
본 연구는 뷔페형 카페테리아 식당에서 근무하는 직원들이 계산 업무를 덜고 조리 업무에 집중하여 업무 성과, 직무만족도를 높일 수 있도록 돕는 카페테리아 무인계산시스템을 제안한다. 무인계산시스템의 작동과정은 크게 두 가지이다. 첫째, 식판을 가져오면 그 위의 음식들을 촬영하여 음식 부분의 ROI(Region of Interest, ROI) 이미지를 추출해낸다. 둘째, 미리 학습된 모델에 앞서 추출한 ROI 이미지를 입력하여 식판 위에 어떤 이미지들이 있는지 분석한다. 그 후 해당 음식과 가격을 GUI로 출력하여 사용자가 확인 후 결제할 수 있도록 한다.
Kim, Bumsu;Kim, Wookchan;Ra, Chanyeop;Moon, Jae Hyun
Annual Conference of KIPS
/
2019.10a
/
pp.238-241
/
2019
본 연구에서는 사회인들의 정해진 패턴을 IoT를 기반으로 AI 기술을 활용하여 Deep Learning 기술을 적용하여 행동패턴을 자동으로 시스템에 업로드 한다. 업로드된 데이터는 Deep Learnig 기술을 통해 유의미한 데이터를 추출하고 이를 각종 가전제품에 제공한다. 데이터의 정합도를 높이기 위해서 초기 데이터는 사용자가 입력한 정해진 생활 패턴을 바탕으로 하며 가우시안 분포를 따르는 난수를 생성하여 training data set으로 사용하여 실제 학습에 적용시켰다. 실생활에서 자동으로 데이터를 활용하기 위해서 IoT기기를 연결하여 AI 학습을 진행하였다. 사회인들은 이 시스템을 통해 집에 들어올 때와 집 밖에 외출할 때 댁내에 있는 편리한 서비스를 제공받을 수 있다.
Purpose The purpose of this study is to deduct the factors for explaining the economic behavior of an Internet user who provides personal information notwithstanding the concern about an invasion of privacy based on the Information Privacy Calculus Theory and Communication Privacy Management Theory. Design/methodology/approach This study made a design of the research model by integrating the factors deducted from the computation theory of information privacy with the factors deducted from the management theory of communication privacy on the basis of the Dual-Process Theory. Findings According to the empirical analysis result, this study confirmed that the Privacy Concern about forms through the Perceived Privacy Risk derived from the Disposition to value Privacy. In addition, this study confirmed that the behavior of an Internet user involved in personal information offering occurs due to the Perceived Benefits contradicting the Privacy Concern.
Proceedings of the Korean Society of Computer Information Conference
/
2019.07a
/
pp.255-256
/
2019
한글 폰트를 만드는 데는 자음+모음 조합으로 약 11,500자 정도의 글자가 필요하다. 디자이너가 글자 하나씩 전부 디자인 하는 것도 굉장한 부담요소이고, 한글폰트를 제작하는데 있어 3개월 이상의 소요 기간과 3000만 원 이상의 비용부담 또한 무시 못 할 요소이다. 게다가 카피라이트 폰트에 대한 저작권 문제 또한 골칫거리다. 그래서 이를 최소한으로 하고자 딥 러닝의 방식중 하나인 GAN(생성적 적대 신경망)을 통해서 디자이너가 399자만 작성하고 나머지는 컴퓨터가 디자이너의 폰트 디자인을 인식하고 자동으로 만들어 주는 프로그램을 고안하였다.
Kim, Young-Kook;Lim, Chae-Hyun;Son, Min-Ji;Kim, Myung-Ho
Proceedings of the Korean Society of Computer Information Conference
/
2020.07a
/
pp.23-26
/
2020
본 논문에서는 CCTV를 통해 얻은 영상에서 얼굴을 인식하여 자동으로 출석 여부를 체크하는 시스템을 소개한다. 이 시스템은 CNN을 바탕으로 RetinaFace 모델을 사용하여 얼굴을 탐지하고, 탐지된 얼굴을 ArcFace 모델로 R512의 목표 공간으로 임베딩한다. 기존 데이터베이스에 등록된 얼굴과 CCTV를 통해 얻은 얼굴들의 임베딩 벡터 사이의 Angular Cosine Distance를 측정하여 동일 인물인지 판단하는 매칭 알고리즘을 제안한다. 실험을 통해 두 모델을 동시에 사용할 최적의 환경을 파악하고, 마스크 착용으로 얼굴의 하단부가 가려지는 폐색 문제에 더욱 효과적으로 대응하여 매칭 성능을 높이는 방법을 제안한다.
도로의 노후화로 포트홀 발생 빈도가 늘어나고 그로 인해 발생하는 사고와 피해액 또한 수억 원대에 이르고 있다. 포트홀 문제를 해결하기 위해 AI 기술, 특히 Image Processing을 이용한 기술이 많이 사용되고 있다. 하지만 실시간으로 영상을 촬영하면서 포트홀을 감지하는 방식은 많은 데이터 처리량과 비용 문제로 인해 일반 운전자들이 쉽게 사용할 수 없다. 본 연구에서는 이러한 문제를 해결하기 위해 두 단계로 나누어 포트홀을 감지하는 방법을 제시한다. 첫 번째 단계에서는 도로 주행 시의 3축 기울기 변화량 값을 분석하여 포트홀임을 구분하고 해당 위치의 사진을 GPS 좌표와 함께 촬영 및 저장한다. 두 번째 단계에서는 촬영한 사진으로부터 OpenCV의 Yolov5를 이용하여 딥러닝을 통한 포트홀을 감지한다. 제안한 시스템으로 데이터 처리량을 줄이고 비용을 절감해 많은 운전자들에게 포트홀 안전 시스템을 보급화 할 수 있다.
Leakage is one of the representative abnormal conditions in Water distribution systems (WDSs). Leakage can potentially occur and cause immediate economic and hydraulic damage upon occurrence. Therefore, leakage detection is essential, but WDSs are located underground, it is difficult. Moreover, when multiple leakage occurs, it is required to prioritize restoration according to the scale and location of the leakage, applying for an optimal restoration framework can be advantageous in terms of system resilience. In this study, various leakage scenarios were generated based on the WDSs hydraulic model, and leakage detection was carried out containing location and scale using a Deep learning-based model. Finally, the leakage location and scale obtained from the detection results were used as a factor for the priority of leakage restoration, and the results of the priority of leakage restoration were derived. The priority of leakage restoration considered not only hydraulic factors but also socio-economic factors (e.g., leakage scale, important facilities).
Journal of the korean academy of Pediatric Dentistry
/
v.49
no.1
/
pp.85-94
/
2022
This retrospective study aimed to evaluate the difference in measurement between conventional orthodontic analysis and artificial intelligence orthodontic analysis in pediatric and adolescent patients aged 7 - 15 with the mixed and permanent dentition. A total of 60 pediatric and adolescent patients (30 mixed dentition, 30 permanent dentition) who underwent lateral cephalometric radiograph for orthodontic diagnosis were randomly selected. Seventeen cephalometric landmarks were identified, and 22 measurements were calculated by 1 examiner, using both conventional analysis method and deep learning-based analysis method. Errors due to repeated measurements were assessed by Pearson's correlation coefficient. For the mixed dentition group and the permanent dentition group, respectively, a paired t-test was used to evaluate the difference between the 2 methods. The difference between the 2 methods for 8 measurements were statistically significant in mixed dentition group: APDI, SNA, SNB, Mandibular plane angle, LAFH (p < 0.001), Facial ratio (p = 0.001), U1 to SN (p = 0.012), and U1 to A-Pg (p = 0.021). In the permanent dentition group, 4 measurements showed a statistically significant difference between the 2 methods: ODI (p = 0.020), Wits appraisal (p = 0.025), Facial ratio (p = 0.026), and U1 to A-Pg (p = 0.001). Compared with the time-consuming conventional orthodontic analysis, the deep learning-based cephalometric system can be clinically acceptable in terms of reliability and validity. However, it is essential to understand the limitations of the deep learning-based programs for orthodontic analysis of pediatric and adolescent patients and use these programs with the proper assessment.
Recently, with the development of deep learning technology, researches to apply a deep learning algorithm to analyze unstructured data such as text and images are being actively conducted. Text classification has been studied for a long time in academia and industry, and various attempts are being performed to utilize data characteristics to improve classification performance. In particular, a hierarchical relationship of labels has been utilized for hierarchical classification. However, the top-down approach mainly used for hierarchical classification has a limitation that misclassification at a higher level blocks the opportunity for correct classification at a lower level. Therefore, in this study, we propose a methodology for classifying hierarchical data using the autoencoder-based deeply supervised network that high-level classification does not block the low-level classification while considering the hierarchical relationship of labels. The proposed methodology adds a main classifier that predicts a low-level label to the autoencoder's latent variable and an auxiliary classifier that predicts a high-level label to the hidden layer of the autoencoder. As a result of experiments on 22,512 academic papers to evaluate the performance of the proposed methodology, it was confirmed that the proposed model showed superior classification accuracy and F1-score compared to the traditional supervised autoencoder and DNN model.
Lee, Hoseop;Shin, Heemin;Shim, David Hyunchul;Cho, Sungwook
Journal of Aerospace System Engineering
/
v.16
no.5
/
pp.70-77
/
2022
This paper proposes database generation and management system for small-pixelized airborne target recognition. The proposed system has five main features: 1) image extraction from in-flight test video frames, 2) automatic image archiving, 3) image data labeling and Meta data annotation, 4) virtual image data generation based on color channel convert conversion and seamless cloning and 5) HOG/LBP-based tiny-pixelized target augmented image data. The proposed framework is Python-based PyQt5 and has an interface that includes OpenCV. Using video files collected from flight tests, an image dataset for airborne target recognition on generates by using the proposed system and system input.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.